2 resultados para Metal oxide inclusion
em Aquatic Commons
Application of chitosan loaded with metal oxide nano particles to remove lead present from sea water
Resumo:
Chitosan is a natural polymer obtained by deacetylation of chitin. After cellulose chitin is the second most abundant polysaccharide in nature. It is biologically safe, non-toxic, biocompatible and biodegradable polysaccharide. Chitosan loaded with zinc oxide nanoparticles have gained more attention bio sorbent because of their better stability, low toxicity, simple and mild preparation method and high sorption capacity. Chitosan loaded with zinc oxide nanoparticles have been prepared of chitosan. The physicochemical properties of nanoparticles were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) Analysis. Its sorption capacity for lead and cadmium ions studied. Factors such as initial concentration of lead ions, cadmium ions sorbent amount, contact time, pH and temperature were investigated. It is found that chitosan loaded with zinc oxide nanoparticles could sorb lead and cadmium ions effectively, this sorption rate was affected significantly by initial concentration of lead and cadmium ions, sorbent amount, contact time, pH of solution. The maximum of percentage of lead sorption was 98 % with initial concentration 3 mg/l and sorbent amount 0.05 g, pH 11 in 45 min and cadmiumwas90 %with initial concentration 3mg/l and sorbent amount 0.05 g, pH 11 in45 min. Consequently chitosan loaded with zinc oxide nanoparticles demonstrated greater fixation ability for lead ions than cadmium ions.
Resumo:
Nutrient digestibility and amino acid availability were assessed in sharp-toothed catfish, Clarias gariepinus, fingerlings fed diets containing soyabean flour (SF) - Poultry meat meal (PMM) blends (25:75. 50:50, and 75:25) and 0.5 of 1.0%, Cr sub(2)0 sub(3). There was agreement between the pattern of overall protein digestibility and average amino acid availability despite the variability in individual amino acid availability the best dry matter, lipid and protein digestibility coefficients, and amino acid availability values were obtained with diets containing 0.5% Cr sub(2)0 sub(3). Chromic Oxide inclusion level appeared to affect nutrient availability. Increased marker level resulted into decreased nutrient digestibility coefficients. Similarly, these diets generated lower fecal crude protein than those with 1.0% Cr sub(2)0 sub(3). However, the latter group recorded higher protein retention efficiency. Dry mailer and lipid of diets containing more soyabean flour seemed to be more digestible than those of poultry meat meal. Similar trend was observed for the apparent availability of the amino acids. This investigation has indicated that low level of marker was better in digestibility study. Utilization of more SF than PMM in the diets of this catfish was more beneficial and should be encouraged in the feed industries producing catfish diets towards a better feed and waste management strategies in this aquaculture operation