3 resultados para Metabolite kinetics
em Aquatic Commons
Resumo:
This review is concerned with the kinetics of calcium carbonate formation and related processes which are important in many hard waters.
Resumo:
Penaeus monodon postlarvae were subjected to increasing feed concentrations and their growth and survival rates were recorded. Measurements were made of dissolved organic matter, and ammonia and nitrite-nitrogen concentrations. Survival was highest at the lowest feeding level and decreased as feed concentration increased. It is concluded that although organic matter enriches the food supply for P. monodon postlarvae, at higher concentration levels it can pollute the culture water, which in turn leads to mass mortality of the postlarvae. Secondly, the survival rate of P. monodon postlarvae is directly related to dissolved organic matter concentration, oxygen tension, and ammonia-nitrogen concentrations in the culture water. Even at sublethal levels these adverse environmental conditions decrease the survival rate.
Resumo:
We hypothesize that the impact of PCB desorption from resuspended sediments depends upon the intensity of the resuspension (which scales to bottom stress in the absence of organisms), the rate at which each congener desorbs (which depends on the size and hydrophobicity of the chemical, the relative amount of 'labile' and 'resistant' forms, and the size distribution of the suspended particles), and the residence time of the particles in the water column (which depends on the time-variable water column turbulence regime and the particle settling velocities). In order to accurately quantify the impact of PCB desorption from Hudson River sediments, we are conducting experiments that realistically mimic bottom shear stress and water column turbulence and rapidly measure PCB congener release. The objectives of this study are to measure the kinetics of PCB congener desorption from Hudson River sediments under realistic bottom shear and water column turbulence conditions and to quantify the impact of shear stress and contaminant aging on PCB desorption kinetics.