1 resultado para Melnikov chaos prediction theory

em Aquatic Commons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.