3 resultados para Medicine, Arab
em Aquatic Commons
Resumo:
A comparative study was carried out between the two biggest creeks along the Arabian Gulf coast of the United Arab Emirates to evaluate impacts of sewage and industrial effluents on their hydrochemical characteristics. Surface and bottom water samples were collected from Abu Dhabi and Dubai creeks during the period from October 1994 to September 1995. The hydrochemical parameters studied were: temperature (21.10-34.00°C), salinity (37.37-47.09%), transparency (0.50-10.0 m), pH (7.97-8.83), dissolved oxygen (1.78-13.93 mg/l) and nutrients ammonia (ND- 13.12,ug-at N/1), nitrite (ND-6.66 ,ug-at N/1), nitrate (ND- 41.18 ,ug-at N/1), phosphate (ND- 13.06 ,ug-at P/1), silicate (0.68-32.50 ,ug-at Si/1), total phosphorus (0.26- 21.48 ,ug-at P/1), and total silicon (0.95- 40.32 ,ug-at Si/1). The present study indicates clearly that seawater of Abu-Dhabi Creek was warmer (28.l2°C) than Dubai (27.56°C) resulting in a higher rate of evaporation. Owing to more evaporation, salinity levels showed higher levels at Abu Dhabi (43.33%) compared to Dubai (39.03%) seawater. The study also revealed higher secchi disc readings at Abu Dhabi Creek (4.68 m) as compared to Dubai Creek (2.60 m) suggesting more transparency at Abu Dhabi Creek. Whereas, seawater of Dubai exhibited higher levels of pH (1.03 times), and dissolved oxygen (1.05 times) than Abu Dhabi seawater due to an increase in productivity. Meantime, seawater of Dubai showed higher tendency to accumulate ammonia (8.22 times), nitrite (10.93 times), nitrate (5.85 times), phosphate (10.64 times), silicate (1.60 times), total phosphorus (3.19 times), and total silicon (1.54 times) compared to Abu Dhabi seawater due to the enrichment of seawater at Dubai with domestic sewage waters which has distinctly elevated the levels of the nutrient salts particularly in inner-most parts of the creek leading to eutrophication signs. The changes occurred in the receiving creek water of Dubai as a result of waste-water disposal that have also reflected on the atomic ratios of nit: Effect of pollution rogen: phosphorus: silicon.
Resumo:
This paper deals with the levels and distributions of nutrient salts in the United Arab Emirates waters. Water samples were collected bimonthly during 1994-1995 from the marine environment of the United Arab Emirates, which extends more than 800km along the Arabian Gulf and the Gulf of Oman. Concentrations of ammonium, nitrite, nitrate, phosphate, silicate, as well as total concentrations of total dissolved nitrogen, phosphorus, and silicon in the area were scattered in the ranges: (ND-6.32; mean: 0.84 µg-at N/l), ND-3.02; mean: 0.42 µg-at N/l), (ND-10.88; mean: 1.18 µg-at N/1), (ND-4.22; mean: 0.62 µg-at P/l), (1.14-28.80; mean: 6.52 µg-at Si/l), (1.52-39.58; mean: 12.28 µg-at N/l), (0.40-4.98; mean: 1.07 µg-at P/l), and (2.77-44.74; mean: 13.02 Si/l) respectively. Of inorganic nitrogen species, ammonium was the highest in the Arabian Gulf waters and nitrate was the highest at the Gulf of Oman. The dissolved inorganic nitrogen total species, phosphate and silicate amounted to 16.4, 47.6, 56.5% respectively, of the concentrations of nitrogen, phosphorus and silicon in the Arabian Gulf and 22.6, 64.4, 44.9% respectively, in the Gulf of Oman, indicating that more than 80% of nitrogen was present in organic forms. Distributions of nutrient in the two regions were higher in the summer season and lower in the winter season due to the oxidation of organic materials. Regional distributions revealed higher values for nitrite (1.3 times), nitrate (2.8 times), phosphate (2.2 times), total dissolved nitrogen (1.3 times), total dissolved phosphorus (1.6 times), and total dissolved silicon (1.3 times) in the Gulf of Oman compared to the Arabian Gulf, indicating more oligotrophic conditions at the Arabian Gulf Whereas no distinct patterns of distribution were observed in the Arabian Gulf waters, an increase in the seaward direction was measured at the Gulf of Oman. Vertical distributions indicated a general increase with depth in the two regions. The mean ratios for total concentrations of phosphorus, nitrogen, and silicon in the Arabian Gulf (1: 11.6: 12.6) and the Gulf of Oman (1: 10.1: 11.8) were lower than the Redfield ratio.
Resumo:
The article discusses the uses of marine organisms in folk medicine and in horticulture in the Philippines. Commonly used marine organisms are the different varieties of seaweeds, sea urchin, sea cucumber, turtle, crocodile and fishes such as grouper and rabbitfish.