9 resultados para McKinley, William, 1843-1901.
em Aquatic Commons
Resumo:
A description of the algal genus Cladophora from Vol 10 of the ”Freshwater Flora of Poland”. Illustrations are included.
Resumo:
William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.
Resumo:
William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.
Resumo:
William Francis Thompson (1888–1965), an early fishery biologist, joined the California Fish and Game Commission in 1917 with a mandate to investigate the marine fisheries of the state. He initiated studies on the albacore tuna, Thunnus alalunga, and the Pacific sardine, Sardinops sagax, as well as studies on other economically important marine organisms. Thompson built up a staff of fishery scientists, many of whom later attained considerable renown in their field, and he helped develop, and then direct, the commission’s first marine fisheries laboratory. During his tenure in California, he developed a personal philosophy of research that he outlined in several publications. Thompson based his approach on the yield-based analysis of the fisheries as opposed to large-scale environmental studies. He left the state agency in 1925 to direct the newly formed International Fisheries Commission (now the International Pacific Halibut Commission). William Thompson became a major figure in fisheries research in the United States, and particularly in the Pacific Northwest and Alaska, during the first half of the 20th cent
Resumo:
William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.
Resumo:
The Effect of two freshwater green algae species Chlorella sp. & Scenedesmus obliquus enriched (from the beginning of culture and after 96 hours) with different dosages of B group vitamins (0, 0.5, 1, and 2 ml of enriching solution per each liter of algae medium) on fecundity of Daphnia magna and growth of Rutilus frisii kutum fry were investigated in a research from spring, 2008 to autumn, 2009. First, each of the green algae species were cultured purely and massively in the Zander (Z-8+N) medium and then the nutritional value (the amount of protein, lipid, and carbohydrate) of enriched algae were meausered. In this study, enriching of Chlorella sp. & S. obliquus with a suitable mix of B group vitamins significantly improved their nutritive value. So the highest amount of nutritional value of Chlorella sp. was obtained because of enriching with dosage 0.5 ml.l-1 (366.654Kcal) and for Scenedesmus obliquus with dosage of 1 ml.l-1 (376.95Kcal). The acquired amount from control group showed an increase of respectively 42% and 11%. According to the results, increased dosages of enriching solution caused Daphnia fecundity to increase (at both stages : enrichment from the beginning of culture and after 96 hours). So the highest average of D. magna reproduction rate was obtained through being fed with Chlorella sp. and S. obliquus enriched with dosage of 2 ml enriching solution per liter of algae medium. The average fecundity of D. magna fed with Chlorella sp. enriched with dosage of 2 ml.l-1 enriching solution from the beginning of culture and after 96 hours was obtained respectively 2.128 ± 0.375 and 2.1 ± 0.69 and the average fecundity of D. magna fed with S. obliquus enriched with dosage of 2 ml enriching solution from the beginning of culture and after 96 hours was obtained respectively 2.128 ± 0.375 and 2.1 ± 0.69 which showed respectively an increase of 61 ٪, 91٪, 77 ٪, and 83٪ in proportion to the acquired amount from control group. When enriching solution was added to either algae culture medium from the beginning of culture, showed statistically significant differences (P<0.05) between dosages of 0 and 2 ml.l-1, 1 and 2 ml.l-1, and 0.5 and 2 ml enriching solution per each liter of Chlorella sp. culture medium and between dosages of 0 and 1 ml.l-1, and 0 and 2 ml enriching solution per each liter of S. obliquus culture medium. The highest average of body weight gain percentage and specific growth rate of kutum fry was obtained respectively 21.19%, 26.63%, 1.92, and 2.34 from the beginning of culture and after 96 hours with dosage of 1 ml B group vitamins per each liter of Chlorella sp. culture medium, which showed respectively an increase of 50%, 70%, 46%, and 62% in proportion to the acquired amount from control group. In the cases which Chlorella sp. were grown in the medium containing vitamin, from point of view of the average percentage of weight and specific growth rate of kutum fry significant differences were observed on the basis of the result of One-way ANOVA between dosages of 0 and 1, 1 and 2 , 0.5 and 1 ml B group vitamins per each liter. The highest average of body weight gain percentage and specific growth rate of kutum fry was obtained respectively 32.02%, 29.42%, 2.78, and 2.34 from the beginning of culture and after 96 hours with dosage of 2 ml B group vitamins per each liter of S. obliquus culture medium, which showed respectively an increase of 32%, 19%, 28%, and 17% in proportion to the acquired amount from control group. In the cases which S. obliquus were grown in the medium containing vitamin, from point of view of the average percentage of weight and specific growth rate of kutum fry significant differences were observed on the basis of the result of One-way ANOVA between dosages of 0 and 1, 0 and 2. According to the results of the present research we can say that considerable enhancement in the quality of the food of D. magna can be made by manipulation of the nutritional value of fresh water unicellular green algae with suitable mixture of B group vitamins, so that both the fecundity of D. magna will increase and the nutritional requirements of the kutum fry will be filled in this way.
Resumo:
The acute toxicity and effects of diazinon on some haematological parameters of kutum (Rutilus frisii kutum, Kamensky, 1901) weighing 613.33 g±157.06 g were studied under static water quality conditions at 15°C ± 2ºC in winter and spring 2009. The effective physical and chemical parameters of water were pH= 7-8.2, dh= 300mg/L (caco3), DO= 7 ppm and T= 15°C±2ºC. The first test was primarily to determine the effects of acute toxicity (LC5096 h) of the agricultural toxicant diazinon (emulsion 60%) on kutum male brood stocks. For this purpose, 4 treatments were used to test toxicity; each treatment was repeated in 3 tanks with 9 fish per treatment and with 180 litres water capacity. After obtaining the final results, the information was analysed statistically with Probit version 1.5 (USEPA, 1985), and we determined the LC10, LC50 and LC90 values at 24 hours, 48 hours, 72 hours and 96 hours; the maximum allowable concentration value (LC5096 h divided by 10) (TRC, 1984); and the degree of toxicity. The second stage of testing consists of four treatments: LC0= 0 as experimental treatment, treatment A with a concentration of LC1= 0.107 mg/L, treatment B with concentration of LC5= 0.157 mg/L, treatment C with concentration of MAC value= 0.04 mg/L. Male brood stocks of kutum were treated with these concentrations for 45 days. Experiments were carried out under static conditions based on the standard TRC, 1984 method over 45 days. Our results show that long-term exposure to diazinon causes a decrease in the erythrocyte count (RBC), haemoglobin (Hb), haematocrit (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), leucocyte count (WBC), lymphocyte, testosterone, iron (Fe), sodium (Na), lactate dehydrogenase (LDH), and cholinesterase (CHeS). In addition, diazinon also causes an increase in prolymphocyte, aspartate aminotransferase (AST), cholesterol, alkaline phosphatase (ALP) and adrenaline (P<0.05). There are no significant effects on monocyte, eosinophil, magnesium (Mg), chloride (Cl), glucose (BS), urea (BUN), uric acid (U.A), triglyceride (TG), calcium (Ca), albumin (Alb), total protein (TP), cortisol, noradrenaline and high density lipoprotein (HDL) levels in kutum male brood stocks (P>0.05). Pathology results showed toxin diazinon no effect on average weight and fish body length, the average weight of heart, brain, spleen, liver, kidney and liver index but caueses decrease of gonad weigth and gonad index and also, cause complications of tissue necrosis, vascular congestion, inflammation in the liver, a sharp reduction in the number of glomeruli, necrosis, vascular congestion and haemorage in the kidney, capsule thickening and fibrosis, atrophy, vascular congestion, macrophages release increased, increasing sediment Hemosiderine and thickening of artery walls in the spleen, atrophy, fibrosis and necrosis in testis , vascular congestion, increased distance between the myocardium and fibrous string in heart and neuronal loss, vascular congestion and edema in the brain of kutum male brood stocks.
Resumo:
Morphological assessment of sexually mature Rutilus frisii kutum Kamenskii 1901 caught from the rivers (Shirud, Khoshkrud, Sepidrud and Chelavand Rivers) flowing in the southwest Caspian Sea region was conducted and sperm volume, total sperm count and sperm concentration of abnormal sperms were determined after exposing the spawners to 60% herbicide butachlor (machete). Spawners under study were maintained in tanks (1000 l) at the Shahid Ansari Teleost Fish Hatchery and exposed to two different concentrations (25% and 75% of its LC50 value) of butachlor. Results obtained indicate that exposure to high butachlor toxicity (75% of its LC50 value) decreased sperm volume to 0.61 ± 0.42 cc in 2-3 year old fishes and to 0.55 ± 0.42 cc in fishes above 3 years of age, while that in fish exposed to low butachlor toxicity (25% of its LC50 value) decreased to 1.55 ± 0.42 cc in 2-3 year old fishes and to 1.28 ± 0.42 cc in fishes above 3 years of age. The sperm volume under normal conditions in R. frisii kutum is 4.6 ± 0.42 cc in 2-3 year olds and 4.58 ± 0.42 cc in fishes above 3 years of age. The total sperm count in R. frisii kutum is 39.74 ± 2.5 billion spermatozoa/cc in 2-3 year olds and 42.99 ± 2.5 billion spermatozoa/cc in fishes above 3 years of age. When exposed to high butachlor toxicity, total sperm count dropped to 16.92 ± 2.5 billion spermatozoa/cc in 2-3 year olds and to 15.98 ± 2.5 billion spermatozoa/cc in fishes above 3 years of age. Similarly total sperm count in R. frisii kutum exposed to low butachlor toxicity was recorded as 23.6 ± 2.5 billion spermatozoa/cc in 2-3 year olds and 29.4 ± 2.5 billion spermatozoa/cc in fishes above 3 years of age. Under normal conditions, on the basis of morphology, spermatozoa showed only 10 ± 1.92% of abnormal sperms. The number of abnormal sperms increased by 28.6 ± 1.92% in fishes exposed to high butachlor toxicity, while that in fishes exposed to low butachlor toxicity increased by 19.7 ± 1.92% in 2-3 year olds and 16.6 ± 19.2% in fishes above 3 years of age. It is evident from the results obtained that increase in level of pollution caused a decrease in sperm volume but an increase in the percentage of abnormal sperms. Results obtained indicate that exposure to high butachlor toxicity (75% of its LC50 value) decreased testostron hormone to 0.31 ± 0.22 ng/ml in high butachlor toxicity, and to 0.45 ± 0.22 ng/ml in low butachlor toxicity (25% of its LC50 value). Testostron hormone dropped to 0.53 ± 0.22 ng/ml in 2-3 year olds and to 0.79 ± 0.22ng/ in fishes above 3 years of age. The testostron hormone under normal conditions in R. frisii kutum is 2.7 ± 0.22 ng/ml. It is evident from the results obtained that increase in level of pollution caused a decrease in testostron hormone
Resumo:
The fish stocks of Lake Albert face immense exploitation pressure which has led to “fishingdown” of their fisheries, with some larger species having been driven to near-extinction, while others such as Citharinus citharus have almost disappeared. Both A. baremose (Angara) and H. forskahlii (Ngassia) historically formed the most important commercial species in Lake Albert until the early 2000s but recent Catch Assessment Surveys (2007-2013) revealed a sweeping decline in their contribution to the commercial catch from 72.7% in 1971 to less than 6% in 2013. The catch per unit effort also registered a two-fold decline from 45.6 and 36.1 kg/boat/day to 22.6 and 18.1 kg/boat/day for A. baremose and H. forskahlii respective between 1971 and 2007. Over 50% of illegal gillnets, below the legal minimum limit of four inches (101.6 mm) used on Lake Albert target the two species. Gillnet experiments found the three inch (76.2 mm) gill net mesh size suitable for sustained harvest of the two species. The study concludes that optimal utilization of the two species and probably other non target fish species is achievable through species specific management strategies, coupling species specific licensing, and controlling harvest of juvenile individuals, overall fishing effort and fish catch on Lake Albert and protecting the vulnerable fish habitats.