6 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
em Aquatic Commons
Resumo:
When estimating parameters that constitute a discrete probability distribution {pj}, it is difficult to determine how constraints should be made to guarantee that the estimated parameters { pˆj} constitute a probability distribution (i.e., pˆj>0, Σ pˆj =1). For age distributions estimated from mixtures of length-at-age distributions, the EM (expectationmaximization) algorithm (Hasselblad, 1966; Hoenig and Heisey, 1987; Kimura and Chikuni, 1987), restricted least squares (Clark, 1981), and weak quasisolutions (Troynikov, 2004) have all been used. Each of these methods appears to guarantee that the estimated distribution will be a true probability distribution with all categories greater than or equal to zero and with individual probabilities that sum to one. In addition, all these methods appear to provide a theoretical basis for solutions that will be either maximum-likelihood estimates or at least convergent to a probability distribut
Resumo:
A generalized Bayesian population dynamics model was developed for analysis of historical mark-recapture studies. The Bayesian approach builds upon existing maximum likelihood methods and is useful when substantial uncertainties exist in the data or little information is available about auxiliary parameters such as tag loss and reporting rates. Movement rates are obtained through Markov-chain Monte-Carlo (MCMC) simulation, which are suitable for use as input in subsequent stock assessment analysis. The mark-recapture model was applied to English sole (Parophrys vetulus) off the west coast of the United States and Canada and migration rates were estimated to be 2% per month to the north and 4% per month to the south. These posterior parameter distributions and the Bayesian framework for comparing hypotheses can guide fishery scientists in structuring the spatial and temporal complexity of future analyses of this kind. This approach could be easily generalized for application to other species and more data-rich fishery analyses.
Resumo:
English: We describe an age-structured statistical catch-at-length analysis (A-SCALA) based on the MULTIFAN-CL model of Fournier et al. (1998). The analysis is applied independently to both the yellowfin and the bigeye tuna populations of the eastern Pacific Ocean (EPO). We model the populations from 1975 to 1999, based on quarterly time steps. Only a single stock for each species is assumed for each analysis, but multiple fisheries that are spatially separate are modeled to allow for spatial differences in catchability and selectivity. The analysis allows for error in the effort-fishing mortality relationship, temporal trends in catchability, temporal variation in recruitment, relationships between the environment and recruitment and between the environment and catchability, and differences in selectivity and catchability among fisheries. The model is fit to total catch data and proportional catch-at-length data conditioned on effort. The A-SCALA method is a statistical approach, and therefore recognizes that the data collected from the fishery do not perfectly represent the population. Also, there is uncertainty in our knowledge about the dynamics of the system and uncertainty about how the observed data relate to the real population. The use of likelihood functions allow us to model the uncertainty in the data collected from the population, and the inclusion of estimable process error allows us to model the uncertainties in the dynamics of the system. The statistical approach allows for the calculation of confidence intervals and the testing of hypotheses. We use a Bayesian version of the maximum likelihood framework that includes distributional constraints on temporal variation in recruitment, the effort-fishing mortality relationship, and catchability. Curvature penalties for selectivity parameters and penalties on extreme fishing mortality rates are also included in the objective function. The mode of the joint posterior distribution is used as an estimate of the model parameters. Confidence intervals are calculated using the normal approximation method. It should be noted that the estimation method includes constraints and priors and therefore the confidence intervals are different from traditionally calculated confidence intervals. Management reference points are calculated, and forward projections are carried out to provide advice for making management decisions for the yellowfin and bigeye populations. Spanish: Describimos un análisis estadístico de captura a talla estructurado por edad, A-SCALA (del inglés age-structured statistical catch-at-length analysis), basado en el modelo MULTIFAN- CL de Fournier et al. (1998). Se aplica el análisis independientemente a las poblaciones de atunes aleta amarilla y patudo del Océano Pacífico oriental (OPO). Modelamos las poblaciones de 1975 a 1999, en pasos trimestrales. Se supone solamente una sola población para cada especie para cada análisis, pero se modelan pesquerías múltiples espacialmente separadas para tomar en cuenta diferencias espaciales en la capturabilidad y selectividad. El análisis toma en cuenta error en la relación esfuerzo-mortalidad por pesca, tendencias temporales en la capturabilidad, variación temporal en el reclutamiento, relaciones entre el medio ambiente y el reclutamiento y entre el medio ambiente y la capturabilidad, y diferencias en selectividad y capturabilidad entre pesquerías. Se ajusta el modelo a datos de captura total y a datos de captura a talla proporcional condicionados sobre esfuerzo. El método A-SCALA es un enfoque estadístico, y reconoce por lo tanto que los datos obtenidos de la pesca no representan la población perfectamente. Además, hay incertidumbre en nuestros conocimientos de la dinámica del sistema e incertidumbre sobre la relación entre los datos observados y la población real. El uso de funciones de verosimilitud nos permite modelar la incertidumbre en los datos obtenidos de la población, y la inclusión de un error de proceso estimable nos permite modelar las incertidumbres en la dinámica del sistema. El enfoque estadístico permite calcular intervalos de confianza y comprobar hipótesis. Usamos una versión bayesiana del marco de verosimilitud máxima que incluye constreñimientos distribucionales sobre la variación temporal en el reclutamiento, la relación esfuerzo-mortalidad por pesca, y la capturabilidad. Se incluyen también en la función objetivo penalidades por curvatura para los parámetros de selectividad y penalidades por tasas extremas de mortalidad por pesca. Se usa la moda de la distribución posterior conjunta como estimación de los parámetros del modelo. Se calculan los intervalos de confianza usando el método de aproximación normal. Cabe destacar que el método de estimación incluye constreñimientos y distribuciones previas y por lo tanto los intervalos de confianza son diferentes de los intervalos de confianza calculados de forma tradicional. Se calculan puntos de referencia para el ordenamiento, y se realizan proyecciones a futuro para asesorar la toma de decisiones para el ordenamiento de las poblaciones de aleta amarilla y patudo.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
Sustainability of benefits from capture fisheries has been a concern of fisheries scientists for a long time. The development of fisheries management models reflects the historical debate (from maximum sustainable yield to maximum economic yield, and so on) of what benefits are valued and need to be sustained. Social and anthropological research needs an increased emphasis on bio-socioeconomic models to effectively determine directions for fisheries management.
Resumo:
Southern bluefin tuna (SBT) (Thunnus maccoyii) growth rates are estimated from tag-return data associated with two time periods, the 1960s and 1980s. The traditional von Bertalanffy growth model (VBG) and a two-phase VBG model were fitted to the data by maximum likelihood. The traditional VBG model did not provide an adequate representation of growth in SBT, and the two-phase VBG yielded a significantly better fit. The results indicated that significant change occurs in the pattern of growth in relation to a VBG curve during the juvenile stages of the SBT life cycle, which may be related to the transition from a tightly schooling fish that spends substantial time in near and surface shore waters to one that is found primarily in more offshore and deeper waters. The results suggest that more complex growth models should be considered for other tunas and for other species that show a marked change in habitat use with age. The likelihood surface for the two-phase VBG model was found to be bimodal and some implications of this are investigated. Significant and substantial differences were found in the growth for fish spawned in the 1960s and in the 1980s, such that after age four there is a difference of about one year in the expected age of a fish of similar length which persists over the size range for which meaningful recapture data are available. This difference may be a density-dependent response as a consequence of the marked reduction in the SBT population. Given the key role that estimates of growth have in most stock assessments, the results indicate that there is a need both for the regular monitoring of growth rates and for provisions for changes in growth over time (possibly related to changes in abundance) in the stock assessment models used for SBT and other species.