3 resultados para Markov Model with Monte-Carlo microsimulations
em Aquatic Commons
Resumo:
Many modern stock assessment methods provide the machinery for determining the status of a stock in relation to certain reference points and for estimating how quickly a stock can be rebuilt. However, these methods typically require catch data, which are not always available. We introduce a model-based framework for estimating reference points, stock status, and recovery times in situations where catch data and other measures of absolute abundance are unavailable. The specif ic estimator developed is essentially an age-structured production model recast in terms relative to pre-exploitation levels. A Bayesian estimation scheme is adopted to allow the incorporation of pertinent auxiliary information such as might be obtained from meta-analyses of similar stocks or anecdotal observations. The approach is applied to the population of goliath grouper (Epinephelus itajara) off southern Florida, for which there are three indices of relative abundance but no reliable catch data. The results confirm anecdotal accounts of a marked decline in abundance during the 1980s followed by a substantial increase after the harvest of goliath grouper was banned in 1990. The ban appears to have reduced fishing pressure to between 10% and 50% of the levels observed during the 1980s. Nevertheless, the predicted fishing mortality rate under the ban appears to remain substantial, perhaps owing to illegal harvest and depth-related release mortality. As a result, the base model predicts that there is less than a 40% chance that the spawning biomass will recover to a level that would produce a 50% spawning potential ratio.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Evaluations of the impact of climate change (such as a greenhouse effect) upon water resources should represent both the expected change and the uncertainty in that expectation. Since water resources such as streamflow and reservoir levels depend on a variety of factors, each of which is subject to significant uncertainty, it is desirable to formulate methods of representing that uncertainty in the forcing factors and from this determine the uncertainty in the response variables of interest. We report here progress in the representation of the uncertainty in climate upon the uncertainty in the estimated hydrologic response.