13 resultados para Marital Disruption
em Aquatic Commons
Resumo:
This report provides an assessment of recent investigations into endocrine disruption in fresh and saltwater species of fish. Most work to date has concen-trated on reproductive endocrine disruption. Laboratory studies have shown a variety of synthetic and natural chemicals including certain industrial intermediates, PAHs, PCBs, pesticides, dioxins, trace elements and plant sterols can interfere with the endocrine system in fish. The potency of most of these chemicals, however, is typically hundreds to thousands of times less than that of endog-enous hormones. Evidence of environmental endocrine disruption ranges from the presence of female egg proteins in males and reduced levels of endogenous hormones in both males and females, to gonadal histopathologies and intersex (presence of ovotestes) fish. Overt endocrine disruption in fish does not appear to be a ubiquitous environmental phenomenon, but rather more likely to occur near sewage treatment plants, pulp and paper mills, and in areas of high organic chemical contamination. However, more wide-spread endocrine disruption can occur in rivers with smaller flows and correspondingly large or numerous wastewater inputs. Some of the most severe examples of endocrine disruption in fish have been found adjacent to sewage treatment plants. Effects are thought to be caused prima-rily by natural and synthetic estrogens and to a lesser extent by the degradation products of alkylphenol poly-ethoxylate surfactants. Effects found in fish near pulp and paper mills include reduced levels of estrogens and androgens as well as masculinization of females, and has been linked to the presence of β-sitosterol, a plant sterol. Effects seen in areas of heavy industrial activity typically include depressed levels of estrogens and androgens as well as reduced gonadal growth, and may be linked to the presence of PAHs, PCBs, and possibly dioxins. At this time, however, there is no clear indication that large populations of fish are being seriously impacted as a result of endocrine disruption, although additional work is needed to address this possibility. (PDF contains 63 pages)
Resumo:
We examined the impacts of mechanical shredding (i.e.. shredding plants and leaving biomass in the system) of the water chestnut (Trapa natans) on water quality and nutrient mobilization in a control and experimental site in Lake Champlain (Vermont-New York). A 1-ha plot was mechanically shredded within 1 h on 26 July, 1999. Broken plant material was initially concentrated on the lake surface of the experimental station after shredding, and was noticeable on the lake surface for 19 d. Over a two week period after shredding. concentrations of total nitrogen (N) and phosphorus (P), and soluble reactive P increased in the lower water column of the experimental station, coinciding with decomposition of water chestnut. Sediments in the control and experimental stations exhibited vet-v low rates of N and P release and could not account for increases in nutrient concentrations in the water column after mechanical shredding. Shredded plant material deployed in mesh bags at the experimental station lost similar to 70% of their total mass, and 42%, N and 70% P within 14 d. indicating Substantial nutrient mobilization via autolysis and decomposition. Chlorophyll a concentrations increased to 35 g/L at the experimental station on day 7 after shredding, compared to a concentration of 4 g/L at the control station. suggesting uptake of mobilized nutrients by phytoplankton. Disruption Of the Surface canopy of water chestnut by shredding was associated with marked increases in turbidity and dissolved oxygen, suggesting increased mixing at the experimental site.
Resumo:
An investigation was conducted into the deaths of more than 220 bottlenose dolphins (Tursiops truncatus) that occurred within the coastal bay ecosystem of mid-Texas between January and May 1992. The high mortality rate was unusual in that it was limited to a relatively small geographical area, occurred primarily within an inshore bay system separated from the Gulf of Mexico by barrier islands, and coincided with deaths of other taxa including birds and fish. Factors examined to determine the potential causes of the dolphin mortalities included microbial pathogens, natural biotoxins, industrial pollutants, other environmental contaminants, and direct human interactions. Emphasis was placed on nonpoint source pesticide runoff from agricultural areas, which had resulted from record rainfall that occurred during the period of increased mortality. Analytical results from sediment, water, and biota indicated that biotoxins, trace metals, and industrial chemical contamination were not likely causative factors in this mortality event. Elevated concentrations of pesticides (atrazine and aldicarb) were detected in surface water samples from bays within the region, and bay salinities were reduced to <10 ppt from December 1991 through April 1992 due to record rainfall and freshwater runoff exceeding any levels since 1939. Prolonged exposure to low salinity could have played a significant role in the unusual mortalities because low salinity exposure may cause disruption of the permeability barrier in dolphin skin. The lack of established toxicity data for marine mammals, particularly dermal absorption and bioaccumulation, precludes accurate toxicological interpretation of results beyond a simple comparison to terrestrial mammalian models. Results clearly indicated that significant periods of agricultural runoff and accompanying low salinities co-occurred with the unusual mortality event in Texas, but no definitive cause of the mortalities was determined. (PDF file contains 25 pages.)
Resumo:
Nypa fruticans occurs in Bayelsa, Rivers, Akwa Ibom and Cross River State, Nigeria; invading an estimated area of 821 Km super(2) mangrove dominated swamps. Human activities such as tree felling, urbanization, oil and gas exploration and exploitation and other activities led to the interference in the normal mangrove by the Nypa palm. Lack of utilization by the local population of the Nypa palm as in into-pacification has increased the population over the years. The effect includes the reduction in primary and secondary productivity, disruption of food chain and erosion of riverbanks. The eradication of the Nypa palm from the Niger delta mangrove ecosystem and replacement with red and white mangroves will restore the ecosystem health and enhance biological diversity
Resumo:
This brief paper discusses the assumption that watercourses might be harbouring a chemical(s) affecting the sexual development in fish. Male fish was found with the oestrogen-dependent blood protein, vitellogenin, usually found only in maturing females. The author examines a number of man-made chemicals present in the environment have been found to be oestrogenic. The paper concludes that rivers contain environmental oestrogens that are capable of causing disruptions in the sexual development of fish. Whether or not these environmental oestrogens are causing a widespread disruption in reproduction in wild fish, however, has yet to be determined.
Resumo:
The main British salmonid species spawn in clean gravel in streams and rivers, many of them in the upland areas of Britain. The earliest stages of the life cycle (eggs and alevins) spend some months within the gravel of the river bed. During this period their survival rate can be strongly influenced by flow regime and by related phenomena such as movement of coarse river bed material, changes in water level and the deposition of silt. In recent years human influence upon the flow regimes of upland water courses and upon the sediment inputs to them has increased. In order to conserve and, if possible, enhance the populations of salmonid fishes a deeper understanding of the interrelationships between survival of young salmonids and flow-related phenomena is needed. The acquisition of appropriate information is the main aim of the present project, which included: Studies on silt movement and the infilling of gravel voids by fine sediments, together with initial studies on the relationship between intragravel oxygen supply rate and the survival of intragravel stages of salmonids; studies in the general field of egg washout. The latter investigated the physical background to gravel bed disruption, the examination of the physical characteristics of sites chosen for redds, dimensions of redds and burial depth of eggs relative to the size of the fish constructing the redd and a series of smaller studies on other aspects of egg washout.
Resumo:
To develop a portfolio of indicators and measures that could best measure changes in the social, economic, environmental and health dimensions of well-being in coastal counties we convened a group of experts March 8-9, 2011 in Charleston, SC, U.S.A. The region of interest was of the northern Gulf of Mexico, specifically, those coastal counties most impacted during the explosion and subsequent oil spill from the Macondo Prospect wellhead during the summer of 2010. Over the course of the two-day workshop participants moved through presentations and facilitated sessions to identify and prioritize potential indicators and measures deemed most valuable for capturing changes in well-being related to changes in or disruption of ecosystem services. The experts reached consensus on a list of indicators that are now being operationalized by NOAA researchers. The ultimate goal of this research project is to determine whether a meaningful set of social and economic indicators can be developed to document changes in well-being that occur as a result of changes in ecosystem services. The outcomes and outputs from the workshop that is the subject of this report helped us to identify high-quality indicators useful for measuring well-being.
Resumo:
Porphyrin metabolic disruption from exposure to xenobiotic contaminants such as heavy metals, dioxins, and aromatic hydrocarbons can elicit overproduction of porphyrins. Measurement of porphyrin levels, when used in conjunction with other diagnostic assays, can help elucidate an organism’s physiological condition and provide evidence for exposure to certain toxicants. A sensitive microplate fluorometric assay has been optimized for detecting total porphyrin levels in detergent solubilized protein extracts from symbiotic, dinoflagellate containing cnidarian tissues. The denaturing buffer used in this modified assay contains a number of potentially interfering components (e.g., sodium dodecyl sulfate (SDS), dithiothreitol (DTT), protease inhibitors, and chlorophyll from the symbiotic zooxanthellae), which required examination and validation. Examination of buffer components were validated for use in this porphyrin assay; while the use of a specific spectrofluorometric filter (excitation 400 ± 15 nm; emission 600 ± 20 nm) minimized chlorophyll interference. The detection limit for this assay is 10 fmol of total porphyrin per μg of total soluble protein and linearity is maintained up to 5000 fmol. The ability to measure total porphyrins in a SDS protein extract now allows a single extract to be used in multiple assays. This is an advantage over classical methods, particularly when tissue samples are limiting, as is often the case with coral due to availability and collection permit restrictions.
Resumo:
The food sources of the leptocephali of the teleostean superorder Elopomorpha have been controversial, yet observations on the leptocephali of the worm eels, Myrophis spp. (family Ophichthidae) collected in the northern Gulf of Mexico indicate active, not passive, feeding. Leptocephali had protists in their alimentary canals. Estimates of the physiological energetics of worm eels indicate that large aloricate protozoa including ciliates could provide substantial energy to these leptocephali toward the end of the premetamorphic and metamorphic stages, given the low energy requirements of metamorphosing leptocephali. Global ocean warming will likely force a shift in oceanic food webs; a shift away from large protozoa toward smaller protists is possible. Such a disruption of the oceanic food webs could further compromise the survival of leptocephali.
Resumo:
Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.
Resumo:
Bycatch studies have largely ignored population level effects on fish species of little commercial interest. Here we analyze bycatch of the lined seahorse (Hippocampus erectus) in the bait-shrimp trawl fishery in Hernando Beach, Florida, providing the first fisheries data for this species. Based on catch per unit of effort (CPUE), size, sex, and reproductive status of trawled H. erectus, 1) approximately 72,000 seahorses were caught annually by this fleet, from a population of unknown size, 2) trawling affected population cohorts differentially because of temporal and spatial variation in CPUE and population size, and 3) a greater proportion of females than males was removed in trawling. Our findings suggest that trawling may affect seahorse populations through direct mortality, social disruption, and habitat damage. However, the lack of specific abundance or catchability estimates for H. erectus means that the precise impact of trawling on this fish remains uncertain. This paper focuses attention on the need for research and monitoring of small fishes that are caught incidentally in nonselective gear.
Resumo:
1. The introduction of trawlers to Lake Victoria to harvest fish will have far reaching effects on the men (and women) presently engaged in the fishery, on the diet of the nation as a whole. 2. However, the whole concept of trawling is so different to present techniques and the scale of operation so great, that disruption to the socio-economy of many people is possible. 3. The sociological studies outlined below will assist the governments in the formulatlon of policies aimed at minimising disruptive effects on the lives of many individuals.
Resumo:
Juveniles of limnothrissa miodon (Boulenger) were introduced into the man-made Lake Kariba in 1967-1968. Thirty months of night-fishing for this species from Sinazongwe, near the centre of the Kariba North bank, from 1971 to 1974 are described. Biological studies were carried out on samples of the catch during most of these months. Limnological studies were carried out over a period of four months in 1973. Limnothrissa is breeding successfully and its number have greatly increased. It has reached an equilibrium level of population size at a lower density than that of Lake Tanganyika sardines, but nevertheless is an important factor in the ecology of Lake Kariba. The growth rate, size at maturity and maximum size are all less than those of Lake Tanganyika Limnothrissa. A marked disruption in the orderly progression of length frequency modes occurs in September, for which the present body of evidence cannot supply an explanation.