410 resultados para Marine zooplankton
em Aquatic Commons
Resumo:
The presence of even very minute quantities of pollutants may become harmful either due to their direct effect on zooplankton or indirectly due to the transfer of the pollutants to other trophic levels through zooplankton. The recent trend in marine pollution studies is therefore to find out the effects of very minute quantities of these pollutants on marine zooplankton and the methods of their accumulation and transfer to the organisms of higher trophic level including man. A review of laboratory and field studies concerning the effects of pollutants such as hydrocarbons, crude oil, heavy metals, pesticides and heated waste water on the survival, breeding, movement, faecal pellet production, growth and development on marine zooplankton is presented.
Resumo:
Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications Aquaculture Knowledge Gaps Glossary Ocean and Climate Changes [pdf, 4.1Mb] Highlights Introduction Atmospheric Indices Change in 1998/99 Comparison of Atmospheric Indices Authorship Yellow Sea / East China Sea [pdf, 2.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Benthos Fish and invertebrates Marine birds and mammals Issues Critical factors causing change Authorship Japan/East Sea [pdf, 3.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical factors causing change Issues Authorship Okhotsk Sea [pdf, 1.7 Mb] Background Status and Trends Climate Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Critical factors causing change Authorship Oyashio / Kuroshio [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Western Subarctic Gyre [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Bering Sea [pdf, 2.2 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of Alaska [pdf, 2.6 Mb] Highlights Background Status and trends Hydrography Chemistry Plankton Fish and Invertebrates Marine birds and mammals Critical factors causing change Issues Authorship California Current [pdf, 2.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of California [pdf, 1.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fisheries Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Transition Zone [pdf, 2.5 Mb] Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Tuna [pdf, 1.5 Mb] Highlights Background Pacific bluefin tuna Albacore tuna Status and trends Ecosystem model and climate forcing Authorship Pacific halibut [pdf, 1.1 Mb] Background The Fishery Climate Influences Authorship Pacific salmon [Updated, pdf, 0.4 Mb] Background Status and Trends Washington, Oregon, and California British Columbia Southeast Alaska Central Alaska Western Alaska Russia Japan Authorship References [pdf, 0.5 Mb]
Resumo:
Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html] (Document pdf contains 48 pages)
Resumo:
Special Publication 2 On-line version On-line version includes links to the following files (these files are not included into publication): Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html]
Resumo:
Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
Long-term time series of zooplankton data provide invaluable information about the fluctuations of species abundance and the stability of marine community structure. These data have demonstrated that environmental variability have a profound effect on zooplankton communities across the Atlantic basin (Beaugrand et al., 2002; Frank et al., 2005; Pershing et al., 2005). The value of these time series increases as they lengthen, but so does the likelihood of changes in sampling or processing methods. Sam-pling zooplankton with nylon nets is highly selective and biased because of mesh selectivity, net avoidance, and damage to fragile organisms. One sampling parameter that must be standardized and closely monitored is the speed of the net through the water column. Tow speed should be as fast as possible to minimize net avoid-ance by the organisms, but not so fast as to damage soft bodied zooplankters or extrude them through the mesh (Tranter et al., 1968; Anderson and Warren, 1991).
Resumo:
Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each g rowth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2 smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10−18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean reg ime shift. During 1977−2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955−1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977−2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.
Resumo:
The Charleston Gyre region is characterized by continuous series of cyclonic eddies that propagate northeastwards before decaying or coalescing with the Gulf Stream south of Cape Hatteras, NC, USA. Over 5 d, chlorophyll-a concentration, zooplankton displacement volume, and zooplankton composition and abundance changed as the eddy moved to the northeast. Surface chlorophyll-a concentration decreased, and zooplankton displacement remained unchanged as the eddy propagated. Zooplankton taxa known to be important dietary constituents of larval fish increased in concentration as the eddy propagated. The concurrent decrease in chlorophyll-a concentration and static zooplankton displacement volume can be explained by initial stimulation of chlorophyll-a concentration by upwelling and nutrient enrichment near the eddy core and to possible grazing as zooplankton with short generation times and large clutch sizes increased in concentration. The zooplankton community did not change significantly within the 5 d that the eddy was tracked, and there was no indication of succession. Mesoscale eddies of the region are dynamic habitats as eddies propagate northeastwards at varying speeds within monthly periods. The abundance of zooplankton important to the diets of larval fish indicates that the region can provide important pelagic nursery habitat for larval fish off the southeast coast of the United States. A month of feeding and growth is more than half the larval duration of most fish spawned over the continental shelf of the southeastern United States in winter.
Resumo:
Zooplankton standing crop and proximate principals were estimated for 8 coastal and 13 oceanic stations of the northern Arabian Sea during March 1991. Biomass did not show any significant difference (p < 0.05) between coastal and oceanic waters. Protein was the principal biochemical component among proximate principals with an average value of 29.6% in coastal and 34.2% in the oceanic zone, suggesting that protein form a major metabolic reserve. Other components such as lipids and carbohydrate seem to be low in tropical zooplankton. The organic carbon and caloric density did not show significant correlation. Average caloric density was 2.5 k.cal super(-1). The average standing stock was 9.25 mg m super(-3) and 5.90 mg m super(-3) for coastal and oceanic water, respectively. Coastal region is more productive than oceanic region in terms of standing crop, as expected.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).
Resumo:
The state of PICES science - 2003 (pdf 281 KB) 2003 Wooster Award (pdf 764 KB) The state of the eastern North Pacific through summer 2003 (pdf 448 KB) The Bering Sea: Current status and recent events (pdf 951 KB) The state of the western North Pacific in the first half of 2003 (pdf 684 KB) The status of oceanic zooplankton in the eastern North Pacific (pdf 390 KB) The precautionary approach to the PDO (pdf 976 KB) Photo highlights of PICES XII (pdf 2.79 MB) William G. Pearcy: Renaissance oceanographer (pdf 2.86 MB) KORDI/PICES/CoML Workshop on "Variability and status of the Yellow Sea and East China Sea ecosystems (pdf 785 KB) PICES/IOC Workshop on "Harmful algal blooms - Harmonization of data" (pdf 330 KB) From physics to predators: Monitoring North Pacific ecosystem dynamics (pdf 270 KB) Toward a coast-wide network of Northeast Pacific coastal-ocean monitoring programs - a brief workshop report (pdf 640) PICES publications (pdf 103 KB) PICES calendar (pdf 45 KB)
Resumo:
Cover [pdf, 1.2 Mb] PICES Science Board and Governing Council hold their first joint meeting [pp. 1-3] [pdf, 0.2 Mb] 3rd International Zooplankton Production Symposium [pp. 4-7] [pdf, 0.6 Mb] The state of the eastern North Pacific entering spring 2003 [pp. 8-9] [pdf, 0.4 Mb] The state of the western North Pacific in 2002 [pp. 10-13] [pdf, 0.6 Mb] The Bering Sea: Current status and recent events [pp. 14-15] [pdf. 0.7 Mb] Patricia Livingston [pp. 16-19] [pdf. 0.5 Mb] Recent changes in the abundance of northern anchovy (Engraulis mordax) off the Pacific Northwest, tracking a regime shift? [pp. 20-21] [pdf. 0.6 Mb] Developing new scientific programs in PICES [pp. 22-26] [pdf. 0.2 Mb] Report of the Yokohama 2003 MODEL Task Team Workshop to develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes [pp. 27-29] [pdf. 0.5 Mb] 3rd PICES Workshop on the Okhotsk Sea and adjacent Areas [pp.30-31] [pdf. 0.4 Mb] Recent oceanographic and marine environmental studies at FERHRI [pp.32-34] [pdf. 0.4 Mb] Symposium Announcement [p. 35] [pdf. 0.3 Mb] PICES announcements [p. 36] [pdf. 0.3 Mb]
Resumo:
Cover [pdf, 0.2 Mb] Climate, biodiversity and ecosystems of the North Pacific [pp. 1-2] [pdf, 0.2 Mb] The state of the western North Pacific in the second half of 2000 [pp. 3-5] [pdf, 0.8 Mb] The status of the Bering Sea: June – December 2000 [pp. 6-7] [pdf, 1.5 Mb] The state of the eastern North Pacific since autumn 2000 [p. 8] [pdf, 0.3 Mb] Korean Yellow Sea Large Marine Ecosystem Program [pp. 9-12] [pdf, 0.5 Mb] Past and ongoing Mexican ecosystem research in the northeast Pacific Ocean [pp. 13-15] [pdf, 0.3 Mb] Vera Alexander [pp. 16-19] [pdf, 1.0 Mb] North Pacific CO2 data for the new millennium [pp. 20-21] [pdf, 0.3 Mb] PICES Higher Trophic Level Modelling Workshop [pp. 22-23] [pdf, 0.4 Mb] Argo Science Team 3rd Meeting (AST-3) [pp. 24-25] [pdf, 0.3 Mb] 2001 coast ocean / salmon ecosystem event [p. 26-27] [pdf, 0.3 Mb] Shifts in zooplankton abundance and species composition off central Oregon and southwestern British Columbia [pp. 28-29] [pdf, 0.3 Mb] The CLIVAR - Pacific Workshop [p. 30] [pdf, 0.2 Mb] PICES dialogue with Mexican scientists [p. 31] [pdf, 0.2 Mb] Announcements [p. 32] [pdf, 0.2 Mb]
Resumo:
Beyond El Nino Conference The status of the Bering Sea: June - December, 1999 The state of the western North Pacific in the second half of 1999 The state of the eastern North Pacific since autumn 1999 Project Argo Report of the ICES Zooplankton Ecology Working Group/PICES meeting Shark abundance increases in the Gulf of Alaska PICES Lower Trophic Level Modeling Workshop, Nemuro On the third meeting of the LMR-GOOS Panel Ocean Ecology of Juvenile Salmonids along the North American Coast