262 resultados para Marine pollution.
em Aquatic Commons
Resumo:
The presence of even very minute quantities of pollutants may become harmful either due to their direct effect on zooplankton or indirectly due to the transfer of the pollutants to other trophic levels through zooplankton. The recent trend in marine pollution studies is therefore to find out the effects of very minute quantities of these pollutants on marine zooplankton and the methods of their accumulation and transfer to the organisms of higher trophic level including man. A review of laboratory and field studies concerning the effects of pollutants such as hydrocarbons, crude oil, heavy metals, pesticides and heated waste water on the survival, breeding, movement, faecal pellet production, growth and development on marine zooplankton is presented.
Resumo:
Following a brief outline of the physiography of the Indian Ocean, an examination is made of the current situation regarding contamination of the environment. Prominent marine pollutants and the consequences of the marine disposal are discussed, considering in particular oil pollution, heavy metal pollution, agricultural wastes and domestic wastes. Research activities conducted in the area investigating the levels of marine pollution are detailed, and an evaluation made of future prospects concerning the monitoring and control of pollution.
Resumo:
This study looked at improving knowledge base capacity and enhance capacity to address marine pollution and water quality monitoring issues in Myanmar. Significant capacity needs were identified and a follow up plan presented.
Resumo:
Development and management indices identified in the capture fishery resources focus on stock management, freshwater and marine pollution by organic and inorganic compounds including silting, plankton sustainability, fishing methods, biological productivity, energy cycles, ornamental fish and sanctuaries. The issue of post-harvest handling and processing is also discussed. The paper also identifies fisheries sectorial problems at the artisanal and industrial level both at sea and at shore, in the processing plant, infrastructure, manpower and marketing issues. The paper suggests that advocacy should be incorporated into extension and communication programme ensuring some changes in attitudes of all stakeholders in the fisheries game. The paper concludes stating that policy makers should stop paying lip-service to the fisheries sub-sector and should create a separate Ministry for Fisheries
Resumo:
As part of the ongoing marine pollution monitoring programme the coastal stretch between Porbandar and Ratnagiri was considered to assess the fishery potential. Regular experimental trawling was done off Porbandar, Veraval, Diu, Hazira, Daman, Bassein, Bombay, Murud and Ratnagiri at a depth range of 5-25 m during 1988 to 1992. The catch rate varied from 1.2 to 225 kg/h (av.20.3 kg/h). Zonewise maximum catch (av.56.8 kg/h) was observed off Ratnagiri followed by off Porbandar (av.30.1 kg/h), off Bombay (av.23.9 kg/h) and off Murud (av.19.8 kg/h). The area between Hazira and Daman was poor in fish catch. In general, the catch rate showed a fluctuating trend during the period of observation. Among the hundred species identified from the collections the most common species were Coilia dussumieri, Johnius glaucus, Scoliodon laticaudus, Lepturacanthus savala, Harpadon nehereus, Sardinella longiceps, Pampus sp. and Congresox sp. The community structure and species assemblage at different zones are discussed in detail.
Resumo:
Monitoring oil pollution by using students to count tarballs on beaches. Samples were taken between 2006 and 2010; a significant relationship was demonstrated between the abundance of tarballs and exposure to shipping lanes. The contribution of local communities to monitoring marine pollution was also demonstrated.
Resumo:
One of the most important marine ecological phenomena is red tide which is created by increasing of phytoplankton population, influenced by different factors such as climate condition changes, utrification hydrological factors and can leave sever and undesired ecological and economical effects behind itself in the case of durability. Coast line of Hormozgan is about 900km from east to west, within the range of geographical coordinates of 56 16 23.8, 26 58 8.8 to 54 34 5.33 and 26 34 32 eastern longitude and northern latitude, seven sampling stations were considered and sampled for a period of one year from October 2008 to October 2009. after the analysis of Satellite images, monthly, during the best time. In several stages, samplings were performed. In each station, three samples were collected for identification and determination of Bloom- creating species abundance. Cochlodinium polykrikoides was the species responsible for the discoloration which occurred at October 2008 in Hormozgan marine water. Environmental parameters such as sea surface temperature, pH, salinity, Dissolved Oxygen concentration, Total Dissolved Solids (T.D.S.), conductivity, nitrate, nitrite and phosphate and also chlorophyll a were measured and calculated. Kruscal Wallis test was used to compare the densities between different months, seasons and the studied stations. Mann-whitney test from Nonparametric Tests was used for couple comparison. Pearson correlation coefficient was used to determine the relationship between physical and chemical data set and the abundance of Cochlodinium polykrikoides. Multivariate Regression and analysis of variance (ANOVA) also were used to obtain the models and equations of red tide occurrence relationship, environmental parameters and nutrient data. The highest density was 26 million cells per liter in Qeshm station. A meaningful difference was observed between sampling months and seasons but there was no between sampling stations which indicates that in favorable conditions, the occurrence of this phenomenon by the studied species is probable. Regarding to β coefficients of nitrate, temperature, phosphate, Total Dissolvable Solutions (T.D.S) and pH these parameters are effective on the abundance of this species and red tide occurrence. Increase in these factors can represent the effects and outcomes of human activities and increase in marine pollution.
Resumo:
In this thesis, wind wave prediction and analysis in the Southern Caspian Sea are surveyed. Because of very much importance and application of this matter in reducing vital and financial damages or marine activities, such as monitoring marine pollution, designing marine structure, shipping, fishing, offshore industry, tourism and etc, gave attention by some marine activities. In this study are used the Caspian Sea topography data that are extracted from the Caspian Sea Hydrography map of Iran Armed Forces Geographical Organization and the I 0 meter wind field data that are extracted from the transmitted GTS synoptic data of regional centers to Forecasting Center of Iran Meteorological Organization for wave prediction and is used the 20012 wave are recorded by the oil company's buoy that was located at distance 28 Kilometers from Neka shore for wave analysis. The results of this research are as follows: - Because of disagreement between the prediction results of SMB method in the Caspian sea and wave data of the Anzali and Neka buoys. The SMB method isn't able to Predict wave characteristics in the Southern Caspian Sea. - Because of good relativity agreement between the WAM model output in the Caspian Sea and wave data of the Anzali buoy. The WAM model is able to predict wave characteristics in the southern Caspian Sea with high relativity accuracy. The extreme wave height distribution function for fitting to the Southern Caspian Sea wave data is obtained by determining free parameters of Poisson-Gumbel function through moment method. These parameters are as below: A=2.41, B=0.33. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by above function with the wave data of Neka buoy is about %35. The 100-year return value of the Southern Caspian Sea significant height wave is about 4.97 meter. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by statistical model of peak over threshold with the wave data of Neka buoy is about %2.28. The parametric relation for fitting to the Southern Caspian Sea frequency spectra is obtained by determining free parameters of the Strekalov, Massel and Krylov etal_ multipeak spectra through mathematical method. These parameters are as below: A = 2.9 B=26.26, C=0.0016 m=0.19 and n=3.69. The maximum relative error between calculated free parameters of the Southern Caspian Sea multipeak spectrum with the proposed free parameters of double-peaked spectrum by Massel and Strekalov on the experimental data from the Caspian Sea is about 36.1 % in spectrum energetic part and is about 74M% in spectrum high frequency part. The peak over threshold waverose of the Southern Caspian Sea shows that maximum occurrence probability of wave height is relevant to waves with 2-2.5 meters wave fhe error sources in the statistical analysis are mainly due to: l) the missing wave data in 2 years duration through battery discharge of Neka buoy. 2) the deportation %15 of significant height annual mean in single year than long period average value that is caused by lack of adequate measurement on oceanic waves, and the error sources in the spectral analysis are mainly due to above- mentioned items and low accurate of the proposed free parameters of double-peaked spectrum on the experimental data from the Caspian Sea.
Resumo:
Making use of sea, as a place for dumping of wastes and other materials from human activities wasn’t forbidden before creation of the convention on the prevention of marine pollution by dumping of wastes and other matters (London Convention). Therefore, industrial countries, without any specific consideration, were dumping their wastes into the world’s seas. Many years and before the beginning of rapid development of industry, the great self- purification of seas were preventing some of discharging problems. But gradually, the increase of industrial development activities, exceeded the production of wastes and other matters, and this led to the misuse of world’s seas and oceans as a dump site. One of the most important consequences of 1972 Stockholm World Conference was to focusing world attention on threats have jeopardized marine environment balance. World countries` leaders committed in Stockholm to begin protecting the environment. Finally, this movement at marine environment section led to the creation of London Convention in the same year. London Convention was concluded for cooperating between countries at December 29, 1972 to promote effective control of all marine environment polluting resources and to prevent marine pollution by dumping wastes and other matters. Then it was opened for signature to other countries. At last, after 15 states signature, this convention was entered in to force at August 30.1975. Ratification and execution of London Convention resulted in coordinated performance of countries in marine waste management. Common actions with supports and cooperation of different international, regional, governmental and non-governmental organizations and agencies prevent marine pollution by dumping of wastes and other matters. Due to the importance of wastes in our marine and coastal areas, investigation of the performance of London Convention can identify the lack of regulations and lack of regulation supports about marine pollution prevention by dumping of wastes and other matters in Iran. Considering this issue, proper protection of seas will be achieved. London Convention has been studied here to achieve intended purposes. In first chapter, generalities about marine environment, including the importance and necessity of marine environment protection, with the focus on some internal and international resources of environmental law accompanying with marine pollution and its recourses, and finally, due to the study theme, dumping of wastes and other matters at seas with its impacts have been investigated .In the section of international measures, a brief history of marine pollution and marine environment international law with international law framework, exclusively for controlling of wastes and other material discharge at seas and oceans has been reviewed. In second chapter, obligations, amendments, and annexes of London Convention have been investigated and classified. The obligations have been categorized in to legal obligations and technical and organizational obligations. In former section, subject ,purpose, territory, exceptions, rights and duties of parties, convention amendments,… and in latter, special requirements for wastes assessment, determination of pollutants` permissible limit, site selection and type of discharge selection, design principles for marine environment quality monitoring program, and discharge license issuance mechanism have been studied. In third chapter, due to the examination of convention performance in Iran, the internal law system for marine environment conservation and its pollution has been mentioned in detail. Considering this, two issues have been compared .firstly, convention obligations with regional treaties that Iran as a party to them and secondly, Iranian internal law there of .Finally, common and different aspects of these issues have been determined. At last, recommendations and strategies for convention enforcement and conformity of its obligations with internal regulations have been presented. Furthermore, translation of convention English text has been reviewed and its protocol has been translated.
Resumo:
The workshop agenda included: presentations from collaborative institutions, national governments and resource persons; a draft scoping study on nutrient loading; and an ecosystem approach to pollution management was tested.
Resumo:
(PDF contains 76 pages)
Resumo:
A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray’s Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Four key objectives of the research are (1) to document existing environmental conditions within the sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either natural or human disturbances; (2) to examine broader cross-shelf spatial patterns in benthic fauna and sediment contaminant concentrations and to identify potential controlling factors associated with the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is anticipated that the information will be of additional value in broadening our understanding of the surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related resourcemanagement issues of the region. We have begun to address the first three of these objectives with data from samples collected in spring 2000 at stations within GRNMS, and in spring 2001 at stations within the sanctuary and along three cross-shelf transects extending from the mouths of Sapelo, Doboy, and Altamaha Sounds out to sanctuary depths (about 17-20 m). This report provides a description of baseline conditions within the sanctuary, based on results of the spring 2000 survey (Section II), and uses data from both 2000 and 2001 to examine overall spatial and temporal patterns in biological and chemical variables within the sanctuary and surrounding inner-shelf environment (Section III). (PDF contains 65 pages)
Resumo:
Thirty sites were sampled in southern Biscayne Bay and Manatee Bay in December 1999 to determine the extent of toxicity in sediments. Analyses and assays included: pesticides and phenols in seawater; chemical contaminants in sediment; amphipod mortality, HRGS P450, sea urchin sperm fertilization and embryology, MicrotoxTM, MutatoxTM, grass shrimp AChE and juvenile clam mortality assays; sea urchin sperm, amphipod and oyster DNA damage; and benthic community assessment. Sediment sites near the mouth of canals showed evidence of contamination. Contaminant plumes and associated toxicity do not appear to extend seaward of the mouth of the canals in an appreciable manner. Concentrations of contaminants in the sediments in open areas of Biscayne and Manatee Bays are generally low. (PDF contains 140 pages)
Resumo:
The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)
Resumo:
The National Marine Sanctuaries Act (16 U.S.C. 1431, as amended) gives the Secretary of Commerce the authority to designate discrete areas of the marine environment as National Marine Sanctuaries and provides the authority to promulgate regulations to provide for the conservation and management of these marine areas. The waters of the Outer Washington Coast were recognized for their high natural resource and human use values and placed on the National Marine Sanctuary Program Site Evaluation List in 1983. In 1988, Congress directed NOAA to designate the Olympic Coast National Marine Sanctuary (Pub. L. 100-627). The Sanctuary, designated in May 1994, worked with the U.S. Coast Guard to request the International Maritime Organization designate an Area to be Avoided (ATBA) on the Olympic Coast. The IMO defines an ATBA as "a routeing measure comprising an area within defined limits in which either navigation is particularly hazardous or it is exceptionally important to avoid casualties and which should be avoided by all ships, or certain classes of ships" (IMO, 1991). This ATBA was adopted in December 1994 by the Maritime Safety Committee of the IMO, “in order to reduce the risk of marine casualty and resulting pollution and damage to the environment of the Olympic Coast National Marine Sanctuary”, (IMO, 1994). The ATBA went into effect in June 1995 and advises operators of vessels carrying petroleum and/or hazardous materials to maintain a 25-mile buffer from the coast. Since that time, Olympic Coast National Marine Sanctuary (OCNMS) has created an education and monitoring program with the goal of ensuring the successful implementation of the ATBA. The Sanctuary enlisted the aid of the U.S. and Canadian coast guards, and the marine industry to educate mariners about the ATBA and to use existing radar data to monitor compliance. Sanctuary monitoring efforts have targeted education on tank vessels observed transiting the ATBA. OCNMS's monitoring efforts allow quantitative evaluation of this voluntary measure. Finally, the tools developed to monitor the ATBA are also used for the more general purpose of monitoring vessel traffic within the Sanctuary. While the Olympic Coast National Marine Sanctuary does not currently regulate vessel traffic, such regulations are within the scope of the Sanctuary’s Final Environmental Impact Statement/Management Plan. Sanctuary staff participate in ongoing maritime and environmental safety initiatives and continually seek opportunities to mitigate risks from marine shipping.(PDF contains 44 pages.)