14 resultados para Manly Hardy

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. Booklet dedication: Published under the direction of a committee appointed by Brigadier General Clarence S. Ridley, Governor of The Panama Canal, to arrange suitable ceremonies, as authorized in Public Resolution No.5, 76th Congress, approved March 28, 1939, to celebrate the twenty-fifth anniversary of the opening of the Panama Canal to commerce. Prepared by Rufus Hardy, Executive Department, The Panama Canal. (120 page document)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Publication: The Canal Diggers in Panama 1904 to 1928 [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. (10 page document)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(PDF contains 3 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambystoma mabeei, a small relatively uncommon salamander of the sub-genus Linguaelapsus, is limited in distribution to the coastal plain of North and South Carolina. First described in 1928, few specimens have been collected and details of its biology have remained essentially unknown. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 86 species of fish have been recorded in the Lake Chad. Most of the species occurring in the lake are widespread including most of the commercially important species. Fish distribution in the lake was adversely affected by the 1972/73 and 1983/84 droughts. The commercially important species before the 1972/73 drought were; Lates, Labeo distichodus, Heterotis, Gymnarchus, Hydrocynus, Citharinus and Bagrus. Other species which had less commercial value at that time include, Clarias, Gnathanemus, Polypterus, Protopterus, Tilapia and Synodontis. Lates niloticus was the most predominant species of commercial importance comprising 50-60% of the total catches of fishermen between 1962 and 1973. Before the 1972/73 drought, occurrence of Clarias lazera was negligible and restricted to long line catches and had little commercial value. As a result of the drought of 1972/73 which resulted in near drying up to the northern sector of the lake, fish populations were confined to isolated pools and were completely scooped out. The remaining fish populations retreated to the southern basin where enough water always remained to hold the surviving representatives of the population. The effects of the drought resulted in occurrence of the little known C. lazera along with other hardy species like Tilapia and Protopterus to dominate the existing fish species composition. In 1976, C. lazera dominated the total catches of fishermen with 85.6%. An overview of the fish population in the lake, their relative abundance, changes in species composition, the effects of drought on the fauna of the lake based on the available data are discussed in this paper

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty individuals of each species of Indian major carps, i.e., Catla catla, Cirrhinus cirrhosus (C. mrigala) and Labeo rohita, obtained from a nursery near Mymensingh, Bangladesh were analysed by means of allozyme electrophoresis. Twenty-one loci were studied. Several loci revealed significant deviation from Hardy-Weinberg expectations caused by deficiency of heterozygotes, indicating Wahlund effects due to problems with species identification. Moreover, bimodal distributions of individual heterozygosity within the three putative species indicated hybridisation. This was confirmed using analysis of individual admixture proportions, as individuals misidentified to species and hybrids between species were observed. Furthermore, factorial correspondence analysis to visualize genetic relationships among individuals revealed three distinct groups containing misclassified individuals, along with some intermediate individuals interpreted as hybrids. Ten per cent of all C. catla and L. rohita had been erroneously identified to species, and 40 per cent of all presumptive C. catla were hybrids between C. catla x C. cirrhosus and C. catla x L. rohita. In the case of C. cirrhosus, 37 per cent of the samples were C. cirrhosus x L. rohita hybrids. Thirty per cent of all presumptive L. rohita turned out to be hybrids between L. rohita x C. catla and L. rohita x C. cirrhosus. The high incidence of hybrids in C. catla might be responsible for slower growth of the fish in aquaculture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to carry out Biometric studies, 75 samples were caught from 3 locations ( Tajan river, Sefidrud and Shirud) using Salic and the length (±1 mm) and weights (± 5 gr) of samples were determined. Using One-way ANOVA by SPPSS software, there wasn’t significant difference between locations in length and fecondity (P ≥0.01(, but there was significant difference between Shirud and tajan samples with sefidrud in weight ) P≤0.01(. In order to carry out genetic variation studies, 210 fish were caught from 3 different regions of the Iranian coastline (Khoshkrud, Tonekabon, Gorganrud) and 1 region in Azerbaijan (Waters of the Caspian Sea close to Kura River mouth) during 2008-2009 . Genomic DNA was extracted of fin using the phenol-chloroform. The quantity and quality of DNA from samples were assessed by spectrophptometer and 1% agarose gel electro-phoresis. PCR was carried out using 15 paired microsatellite primers. PCR products were separated on 8% polyacrylamide gels that were stained using silver nitrate. Molecular weight calculate using UVTech software. The recorded microsatellite genotypes were used as input data for the GENALEX software version 6 package in order to calculate allele and genotype frequencies, observed (Ho) and (He) expected heterozygosities and to test for deviations from Hardy-Weinberg equilibrium. Genetic distance between two populations was estimated from Nei standard genetic distance and genetic similarity index (Nei, 1972). Genetic differentiation between populations was also evaluated by the calculation of pairwise estimates of Fst and Rst values. From 15 SSR markers were used in this investigation, 9 of them were polymorph. Average of expected and observed heterozygosity was 0.54 and 0.49 respectively. Significant deviations from Hardy-Weinberg expectations were observed in all of location except Anzali lagoon- autumn in AF277576 and EF144125, Khoshkrud in EF144125 and Gorganrud and Kura in AF277576. Using Fst and Rst there was significant difference between locations ) P≤0.01(. According to Fst , the highest population differentiation (Fst= 0.217) was between Gorganrud and Khoshkrud that have the lowest Nm and the lowest (Fst= 0.086) was between Gorganrud and Tonekabon that have the highest Nm. Using Rst the highest population differentiation (Rst= 0.271) was between Tonekabon and spring Anzali lagoon and the lowest (Rst= 0.026) was between Tonekabon and Autumn Anzali 159 lagoon. Also the difference between Spring Anzali lagoon and Autumn Anzali lagoon was noticeable (Fst=0.15). AMOVA analysis with consideration of 2 sampling regions (Iran and Azerbaijan) and 7 sampling locations (Iran: Khoshkrud, Tonekabon, Gorganrud, Spring Anzali lagoon and Autumn Anzali lagoon ; Azerbaijan: the Kura mouth) revealed that almost all of the variance in data namely 83% )P≤0.01( was within locations, Genetic variances among locations was 14% )P≤0.01( and among regions was 3% )P≤0.01(. The genetic distance was the highest (0.646) between Gorganrud and Autumn Anzali lagoon populations, whereas the lowest distance (0.237) was between Gorganrud and Tonekabon River. Result obtained from the present study show that at least 2 different population of Rutilus frissi kutum are found in the Caspian sea,which are including the kura river population and the southern Caspian sea samples and it appears that there is more than one population in southern Caspian sea that should be attantioned in artifical reproduction Center and stoke rebilding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 361 caudal fin samples were collected from adult A. stellatus specimens caught in the north Caspian Sea, including specimens from Kazakhstan (Ural River), Russia (Volga River), Azerbaijan (Kura River), specimens caught in the south Caspian Sea including specimens from Fishery Zone 1 (from Astara to Anzali), Fishery Zone 2 (from Anzali to Ramsar), Fishery Zone 3 (from Nowshahr to Babolsar), Fishery Zone 4 (from Miyankaleh to Gomishan) as well as from specimens caught in Turkmenistan (all specimens were collected during the sturgeon stock assessment survey). About 2 g of fin tissue was removed from each caudal fin sample, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using phenol-chloroform method. The quality and quantity of DNA was assessed using 1% Agarose gel electrophoresis and Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 paired microsatellite primer. PCR products were electrophoresed on polyacrylamide gels (6%) that were stained using silver nitrate. Electrophoretic patterns and DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected heterozygosity and observed heterozygosity allele number, and the effective allele number, genetic similarity and genetic distance, FST and RST were calculated. The Hardy Wienberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendrogram for genetic distances and identities were calculated using TFPGA program for any level of the hierarchy. It is evident from the results obtained that the 15 paired primers studied, polymorphism was observed in 10 pairs in 12 loci, while one locus did not produce DNA bands. Mean allele number was 13.6. Mean observed and expected heterozygosity was 0.86 and 0.642, respectively. It was also seen that specimens from all regions were not in Hardy Wienberg Equilibrium in most of the loci (P≤0.001). Highest Fst (0.063) was observed when comparing specimens from Fishery Zone 2 and Fishery Zone 4 (Nm=3.7) and lowest FST (0.028) was observed when comparing specimens from the Volga River and those from the Ural River (8.7). Significant differences (P<0.01) were observed between RST recorded in the specimens studied. Highest genetic distance (0.604) and lowest genetic resemblance (0.547) were observed between specimens from Fishery zones 2 and 4. Lowest genetic distance (0.311) and highest genetic resemblance (0.733) was observed between specimens from Turkmenistan and specimens from Fishery zone 1. Based on the genetic dendrogeram tree derived by applying UPGMA algorithm, A. stellatus specimens from Fishery zone 2 or in other words specimens from the Sepidrud River belong to one cluster which divides into two clusters, one of which includes specimens from Fishery zones 1, 3 and 4 and specimens from Turkmenistan while the other cluster includes specimens from Ural, Volga and Kura Rivers. It is thus evident that the main population of this species belongs to the Sepidrud River. Results obtained from the present study show that at least eight different populations of A. stellatus are found in the north and south Caspian Sea, four of which are known populations including the Ural River population, the Volga River population, the Kura River population and the Sepidrud River populations. The four other populations identified belonging to Fishery zones 1, 3, and 4 and to Turkmenistan are most probably late or early spawners of the spring run and autumn run of each of the major rivers mentioned. Specific markers were also identified for each of the populations identified. The Ural River population can be identified using primers Spl-68, 54b and Spl-104, 163 170, 173, the Volga River population can be identified using primers LS-54b and Spl-104, 170, 173 113a and similarly the population from the Kura River can be identified using primers LS-34, 54b and Spl-163, 173 and that from the Sepidrud River can be identified using primers LS-19, 34, 54b and Spl-105, 113b. This study gives evidence of the presence of different populations of this species and calls for serious measures to be taken to protect the genetic stocks of these populations. Considering that the population of A. stellatus in Fishery zone 2 is an independent population of the Sepidrud River in the Gilan Province, the catch of these fishes in the region needs to be controlled and regulated in order to restore the declining stocks of this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic structure of pikeperch (Sander lucioperca) and perch (Perca fluviatilis) populations was studied using microsatellite technique. A total of 207 specimens of adult pikeperch were collected from Aras dam (57 specimens), Anzali wetland (50 specimens), Talesh (50 specimens) and Chaboksar (50 specimens) coasts. Also a total of 158 specimens of adult perch were collected from Anzali (Abkenar (50 specimens)and Hendekhale(48 specimens)) and Amirkolaye(60 specimens) wetlands. About 2 g of each specimen's dorsal fin was removed, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using ammonium-acetate method. The quality and quantity of DNA was assessed using 1% agarose gel electrophoresis. Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 pairs of microsatellite primers. PCR products were electrophoresed on poly acryl amide gels (6%) that were stained that were stained using silver nitrate. DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected and observed heterozygosity , allele number and the effective allele number, genetic similarity and genetic distance, Fst, Rst, Hardy Weinberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendogram for genetic distances and identities were calculated using TFPGA program for any level of hierarchy. The results for P. fluviatilis showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 4.1±1.1 and mean observed and expected heterozygosity was 0.56±0.12 and 0.58±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.095) with Nm=2.37 was observed between Hendekhale and Amirkolaye and the lowest Fst (0.004) with Nm=59.31 was observed between Abkenar and Hendekhale. According to AMOVA Significant difference (P<0.05) was observed between recorded Rst in the studied regions in Anzali and Amirkolaye lagoons. In another words there are two distinct populations of this species in Anzali and Amirkolaye lagoons. The highest genetic distance (0.181) and lowest genetic resemblance (0.834) were observed between specimens from Hendekhale and Amirkolaye and the lowest genetic distance (0.099) and highest genetic 176 resemblance (0.981) were observed between specimens from Abkenar and Hendekhale. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Anzali and Amirkolaye wetlands have the same ancestor. On the other hand there is no noticeable genetic distance between the specimens of these two regions. Also the results for S. lucioperca showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 3.0±0.6 and mean observed and expected heterozygosity was 0.52±0.21 and 0.50±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.093) with Nm=2.43 was observed between Aras dam and Anzali wetland and the lowest Fst (0.022) with Nm=11.27 was observed between Talesh and Chaboksar coasts. Significant differences (P<0.05) were observed between recorded Rst in the studied regions exept for Talesh and Chaboksar Coasts. In another words there are three distinct populations of this species in Caspian sea, Anzali wetland and Aras dam. Highest genetic distance (0.110) and lowest genetic resemblance (0.896) were observed between specimens from Aras dam and Anzali wetland and the lowest genetic distance (0.034) and highest genetic resemblance (0.966) were observed between specimens from Talesh and Chaboksar coasts. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Talesh and Chaboksar coasts have the lowest genetic distance. On the other hand the main population of this species belongs to Anzali wetland. Phylogenetic relationship of these two species was inferred using mitochondrial cytochrome b gene sequencing. For this purpose 2 specimens of P. fluviatilis from Anzali wetland, 2 specimens of S. lucioperca from Aras dam and 2 specimens of S. lucioperca from Anzali wetland were sequenced and submitted in Gene Bank. These sequences were aligned with Clustal W. The phylogenic relationships were assessed with Mega 4. The results of evolutionary history studies of these species using Neighbor-Joining and Maximum Parsimony methods showed that the evolutionary origin of pikeperch in Aras Dam and Anzali wetland is common. On the other hand these two species had common ancestor in about 4 million years ago. Also different sequences of any region specimens are supposed as different haplotypes. 177 As a conclusion the results of this study showed that microsatellite and mtDNA sequencing methods respectively are effective in genetic structure and phylogenic studies of P. fluviatilis and S. lucioperca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catfish industry in the Philippines is budding and projected to expand in the coming years. This is evident from conversations with active catfish farmers who all hope to be able to expand production, whether backyard or commercial because their present production can hardly supply the demands of buyers. NIFTDC, a fisheries technology and development center in Dagupan City, Philippines, however, says that unless the government has a catfish program, expansion of the industry would be slow. Work on catfish research is only just starting and the culture methods remain to be on a gut feel basis. The farmers are left to survive on their own. Luckily for them, catfish is hardy, easy to grow, and has a growing market. Clearly, if catfish can provide cheap protein for more people, scientific support must be made available for the farmers.