200 resultados para Management of water
em Aquatic Commons
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production
Resumo:
A review article which discusses the ecology and management of common water plants in lowland streams, with an introduction containing a review of previous studies on the subject. The article covers the significance of seasonal growth, the significance of stand structure (particularly in relation to hydraulic resistence), an assessment of current river management, improvements to plant management techniques (in relation to cutting), and alternatives to the traditional techniques of river plant management. There are a number of accompanying figures.
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.
Resumo:
Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has invaded most countries in the tropics and sub-tropics, introduced by man, mainly for ornamental purposes. Such introductions led to the infestation of most freshwater-ways in the southern United States of America, parts of Australia, the pacific islands, and most countries in Asia and Africa. The extensive tightly packed mats of water hyacinth are often associated with devastating socio-economic and environmental impacts. Invasion by the weed has, therefore, often generated urgent costly problems associated with the weed biomass and its management. A classic example of such problems was triggered by the invasion and proliferation of water hyacinth in the Lake Victoria Basin during the 1980s (Freilink 1989, Taylor 1993, Twongo et al., 1995). The weed infestation marked the beginning of a decade of intensive and systematic campaign by the three riparian states (Kenya, Tanzania and Uganda) to bring weed proliferation under control. The discussions in this Chapter span over ten years of dealing with the challenges paused by the imperative to manage infestations of water hyacinth in the Lake Victoria Basin. The challenges included the need to understand the dynamics of water hyacinth infestation; its distribution, proliferation and impact modalities; and the development and implementation of appropriate weed control strategies and options. Most specific examples were taken from the Ugandan experience (NARO, 2002).
Resumo:
Biological control was foreseen as the long-term strategy for controlling water hyacinth in Uganda. Two species of weevils, Neochetina eichhorniae and Neochetina bruchi were imported into Uganda from Benin (West Africa) in 1993. A total of 600 weevils of each species were imported. The weevils were tested for specificity using key agricultural crops including maize, beans and bananas and were found to be water-hyacinth specific for their food and reproduction.
Resumo:
Physical control of water hyacinth consists of removing the plants from the water by hand or machines. It is considered over effetive because it involves removing the whole plants from water. The first attempt on physical control was in 1992 when weed infestation was causing serious problems to the fishing communities in Lake Kyoga. The fishermen had problems of accessing the lake as huge masses of mobile weed blocked landing sites. Furthermore, the fishers lost their nets, which were swept away by mobile water hyacinth. As a result, an integrated control strategy involving physical control (manual and mechanical removal) was put in place. Through this method, the fishers were able to open up access routes to fishing grounds even though weed mats often reblocked the access routes. In the infested lakes, manual removal offered remedial relief to fish Iandings and other access sites. Sites of strategic importance such as hydro-electric power generation dam, water intake points and docking points which had large masses of water hyacinth required heavy machinery and mechanical harvesters were used at these sites.
Resumo:
The ”Vollenweider model” is a sophisticated mathematical statement about the long-range behaviour of (mainly temperate) lakes and their ability to support phytoplankton chlorophyll. Misapplication of the model, against which Vollenweider himself warned, has led to many misconceptions about the dynamics of plankton in lakes and reservoirs and about how best to manage systems subject to eutrophication. This contribution intends to frame the most important issues in context of the phosphorus- loading and phosphorus-limitation concepts. Emphasis is placed on the need to distinguish rate-limitation from capacity-limitation, to understand which is more manageable and why, to discern the mechanisms of internal recycling and their importance, and to appreciate the respective roles of physical and biotic components in local control of algal dynamics. Some general approaches to the management of water quality in lakes and reservoirs to eutrophication are outlined.
Resumo:
Giant cutgrass ( Zizaniopsis miliacea (Michx.) Doell. & Asch.), a tall emergent grass native to the southeastern United States, was studied in Lake Seminole where it formed large expanding stands, and Lake Alice where it was confined to a stable narrow fringe.
Resumo:
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.
Resumo:
Waterhyacinth ( Eichhornia crassipes (Mart.) Solms.) was evaluated at ratios of 25, 50 and 75% with paddy straw ( Oryza sativa L.) for oyster mushroom ( Pleurotus sajor-caju) cultivation. There was an increase in yield with decreasing ratio waterhyacinth.
Resumo:
determine the impact of water temperature on the efficacy of the contact herbicides diquat (6,7-dihydrodipyrido [1,2- α:2’,1’-c] pyrazinediium ion) and endothall (7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid) for control of the exotic nuisance species curlyleaf pondweed (Potamogeton crispus L.) across a range of water temperatures.
Resumo:
The rapidly expanding population and economic growth in the seven counties of the East Central Florida Regional Planning Council as shown in Figure 1, herein called the East Central Florida Region or the Region, has resulted in increasing demands on its water resources. Although there is abundant water in the Region as a whole, the water in some areas of the Region is of unacceptable quality for most uses. As the population increases the demand for water will become much greater and the available supply may be reduced by pollution and increased drainage necessitated by urbanization and other land development- Ground-water supplies can be increased by capturing and storing water underground that now drains to the sea or evaporates from swamp areas. Research is needed, however, to develop artificial-recharge methods that are feasible and which will preserve or improve the quality of water in the aquifer. (PDF contains 57 pages)
Resumo:
Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation
Resumo:
A brief account is given of a pilot demonstration of the chemical control of water hyacinth (Eichhornia crassipes) at Ere (a channel) in Nigeria using the herbicide glyphosphate. Results suggest that there was an increase in the nutrient content of the channel after herbicide application. This implied an upsurge of available food for fish and other aquatic organisms within the channel after the herbicide application. The decaying water hyacinth mass which sinks into the medium is likely to boost nutrient content, promoting the growth of fish and other aquatic animals. It is concluded that herbicidal control of water hyacinth is possible, especially under specialists' management with the conservation of fish and other non-target aquatic organisms alongside improved fish production
Resumo:
Kainji Lake, the first man-made lake in Nigeria is one of the most researched water bodies in Africa. Earlier studies indicated that there was no systematic management of the lake fisheries involving the participation of the fishers in the decision-making processes before 1993. In 1993, the Nigeria-German Kainji Lake Fisheries Promotion Project (KLFPP) started the introduction of a bottom-up approach in the management of the fishery resources through a random selection of some fishers representatives for the decision making body of the project. The paper traces the democratization process of the management approach to the lake fisheries culminating in the systematic selection, appointment, training and assignment of responsibilities to twenty-four Wakilis covering the 316 fishing communities around Lake Kainji