4 resultados para Macurdy, Elisha, 1763-1845.
em Aquatic Commons
Resumo:
We compared seasonal changes in Eurasian watermilfoil (Myriophyllum spicatum L.) characteristics and water temperature for a shallow poind in Davis, CA, and the Truckee River, near Tahoe City, CA. Tissue C and N were 15% lower in plants from the Truckee River than in plants from the Davis pond. Seasonal fluctuations in tissue N were also different. Mean phenolic acid content of Truckee River palnts (162yM g-1) was less than those from the shallow pond (195 yM g-1). Phenolic acid content was positively related to tissue C for Truckee River and Davis pond plants and, tissue C:N ratio for Truckee River plants. Mean monthly water temperature (1990 to 1998) for the Truckee River site was less than 20 C. Water temperatures were warmer in August and September at this site. However, Eurasian watermilfoil collected during these months was characterized by lower levels of tissue N. During a 29-month period beginning January 1994, mean monthly water temperature for the Davis pond exceeded 20 C, only during July to September 1995. Tissue N was generally greater during summer for watermilfoil growing in the pond. These results imply that Eurasian watermilfoil biological control agents may have different developmental rates in these habitats, and thus different impacts on watermilfoil populations.
Resumo:
The specialist aquatic herbivore Euhrychiopsis lecontei (Dietz) is currently being researched as a potential biological control agent for Eurasian watermilfoil (Myriophyllum spicatum L.). Our research in Wisconsin focused on 1) determining milfoil weevil distribution across lakes, 2) assessing limnological characteristics associated with their abundance, and 3) evaluating milfoil weevil augmentation as a practical management tool for controlling Eurasian watermilfoil.
Resumo:
Spencer Fullerton Baird was born in Reading, Pennsylvania, February 3, 1823. In 1834 he was sent to a Quaker boarding-school kept by Dr. McGraw, at Port Deposit, Maryland, and the year following to the Reading Grammar School. In 1836 he entered Dickinson College, and was graduated at the age of seventeen. After leaving college, his time for several years was devoted to studies in general natural history, to long pedestrian excursions for the purpose of observing animals and plants and collecting specimens, and to the organization of a private cabinet of natural history, which a few years later became the nucleus of the museum of the Smithsonian Institution. During this period he published a number of original papers on natural history. He also read medicine with Dr. Middleton Goldsmith, attending a winter course of lectures at the College of Physicians and Surgeons, in New York, in 1842. His medical course was never formally completed, although in 1848 he received the degree of M. D., honoris causa, from the Philadelphia Medical College. In 1845 he was chosen professor of natural history in Dickinson College, and in 1846 his duties and emoluments were increased by election to the chair of natural history and chemistry in the same institution. In 1848 he declined a call to the professorship of natural science in the University of Vermont. In 1849 he undertook his first extensive literary work, translating and editing the text for the "Iconographic Encyclopedia," an English version of Heck's Bilder Atlas, published in connection with Brockhaus's Conversations Lexikon.
Resumo:
Historical sources of the late-18th and 19th centuries were searched for information on coastal weather conditions in Southern California. Relatively calm winters until 1828 were followed by unusually stormy winters from about 1829 to 1839. Later periods were again predominantly calm, with notable exceptions related to the ENSO events of 1845 and 1878. Following decreases through the stormy 1830s, sizes of kelp forests appear to have rebounded in the 1840s. ENSO occurrences and eruption of the volcano Cosiguina in 1835 are likely causes for changing wind patterns. Our results link the unique AD 1840 Macoma leptonoidea pelecypod shell layer in laminated Santa Barbara Basin sediment ("Macoma event") to abruptly changing oceanographic and weather patterns.