18 resultados para METHYL MERCURY
em Aquatic Commons
Resumo:
A number of wide-ranging monitoring studies have been performed in order to estimate the degree of mercury (Hg) contamination in freshwater ecosystems. Knowledge regarding contamination of different levels of the food chain is necessary for estimation of total pollutant input fluxes and subsequent partitioning among different phases in the aquatic system. The growing international concern about this environmental data is closely related to the strongly developing ecological risk assessment activities. In addition,freshwater monitoring outputs hold a key position in the estimation of the Hg dose consumed by the human population as it is highly dependent on fish consumption. So monitoring of Hg in the tissue of edible fish is extremely important because of contaminated fish has caused serious neurological damage to new born babies and adults. Mercury tends to accumulate in fish tissue, particularly, in the form of methyl mercury, which is about 10 times more toxic than inorganic mercury. The Anzali lagoon is one of the biggest wetland of Guilan province, which joins to the Caspian sea. Many Chemical and industrial factories plus agricultural runoffs and urban and rural sewages are major polluting sources of the Anzali wetland. Since many of those polluting sources drain their wastes directly or indirectly into the Anzali wetland and their sewages may be polluted with Hg, this study was conducted to find out the bioaccumulation of Hg bioaccumulation in pike (Esox lucius) food chain from Anzali lagoon, Iran. Sampling were carried out from July 2004 to July 2005, in addition 318 speciments of 9 fish species were collected. T-Hg was measured by LECO AMA 254 Advanced Mercury Analyzer (USA) according to ASTM standard No D-6722. Each sample was analyzed 3 times. Accuracy of T-Hg analysis was checked by running three samples of Standard Reference Materials; SRM 1633b, SRM 2711 & Sra 2709. Detection limit was 0.001 mg/kg in dry weight. The Accuracy degree of analyzor equipment with RSD<%0.05 (N=7) was between %95.5 and %105. In overal eigth fish species were distingushed in the gut content of 87 speciments of pike with age 1-5 year and maximum length 550mm. The max. and min. concentration of T-Hg in dorsal muscle of pjke was 0.2ppm in one year and 1.2ppm in five year class. The mean of T-Hg significantly increased with age and length increased (P<0.05).Mercury accumulation pattern in pike was as well as muscle > liver > spleen (P<0.05). THg content in female was higher than male(P<0.05). In contrast the mean of THg concentration in dorsal muscle of eigth fish species as prey was 0.282, 0.261, 0.328, 0.254, 0.256, 0.286, 0.322 and 0.241 ppm for Carassius auratus gibelio, Hemiculter leucisculus, Blicca bjoerkna transcaucasica, Chalcalburnus mossulensis, Rhodeus sericeus amarus, Gambusia holbrooki, Alburnus charusini hohenackeri & Scardinius Erythrophthalmus respectively.Liner regresion indicated that high degree of relationship between age of pike and Uptak/Intake ratio (R2=%99.12) and indicated that the mercury bioaccumulation in the pike dorsal muscle increased with age increased. BFA was >1 and and indicating the mercury biomagnification in the pike food chain. Trophy level of pike in the Anzali lagoon was estimated as well as 3.5 and 4 . It is generally agreed that Hg concentration in carnivorous fish are higher than in noncarnivorous species.
Resumo:
Many Central Florida lakes, particularly those in the Kissimmee River watershed, are maintained 0.5 to 1.0 m lower than historic (pre-1960) levels during the summer hurricane season for flood control purposes. These lower water levels have allowed proliferation and formation of dense monotypic populations of pickerelweed ( Pontederia cordata L.) and other broadleaf species that out compete more desirable native grasses (Hulon, pers. comm., 2002). Due to the limited availability of data on the effects of metsulfuron methyl on wetland plants, particularly in Florida, the present study was carried out with the objective of testing its phytotoxicity on six wetland species, to determine the feasibility of its use for primary pickerelweed control.
Resumo:
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
The toxicity of methyl amine was studied by finding out its LC 50 values for Catla catla fingerlings. On the basis of LC 50 values, the harmless concentration of methyl amine was found to be 12.8 ppm. This indicates that methyl amine is fairly toxic to C. catla fingerlings and needs care for its disposal in aquatic environment.
Resumo:
The present study reports the behavioural and enzymological responses in a freshwater teleost fish, Cyprinus carpio var. communis, exposed to acute and sublethal toxicities of mercuric chloride. During acute treatment, significant behavioural changes like erratic swimming, excess mucus secretion and increased opercular movements were noticed. During acute and sublethal treatments, both aspartate amino transferase and alanine amino transferase activity increased throughout the study period. Comparing the treatments, the changes in enzyme activities were found high in acute treatment and all the values were significant at 5% level. The above findings can be used as non-specific biomarkers of environmental pollutants.
Resumo:
The acute toxicity test conducted by static bioassay techniques have revealed that among selected heavy metals, copper is more toxic than zinc and mercury to Planaxis sulcatus and Trochus radiatus. The natural availability of heavy metals in the surrounding environment of these organisms is found to be deciding factor for their toxicity. Natural habitat of the animal also contributes to the sensitivity of a particular animal to the heavy metals tested. In addition the tendency of the animal to overcome the adverse conditions in their surrounding also plays a significant role in toxicity of pollutants.
Resumo:
The distribution of mercury in water, sediment and some biological samples of the Rushikulya estuary, east coast of India were assessed during Jan-Dec. 1989. Both the dissolved plus acid leachable mercury contents in water and the sediment mercury discerned conspicuous spatial and seasonal fluctuations. Adsorption on to the suspended particulates was found to be the most likely mechanism for removal of mercury from the water column. Exchange of mercury from sediments to water was observed at high salinities (20-30x10-3). The residual mercury contents in the biological samples revealed that bio-accumulation by bottom-dwelling organisms are higher than the pelagic components.
Resumo:
The behaviour of metals in aquatic ecosystems is dependent on various environmental factors. Experiments were conducted in five different contact times (0.5, 2, 12, 24 and 48h) between soil sediment and mercury on Cyprinus carpio var communis. It was observed that contact time with soil sediment had significant effect in reducing the toxicity of mercury. Higher the time of contact, greater the effect. Medium hard water (150 mg/L CaC0 sub(3) of total hardness) had the highest effect as compared to other water in reducing the toxicity of mercury when combined with underlying soil sediment. With the increase in contact time, complexation and adsorption of inorganic mercury ions with the dissolved and particulate phases of water and soil sediment were increased; thereby bioaccumulation of mercury ions by scale carp was more. Applicability of the result of this experiment in natural ecosystems was also suggested.
Resumo:
Lethal and sub-lethal effects of mercury have been studied in Perna viridis and Modiolus carvalhoi. For P. viridis LC30 is 1.0 p.p.m. at 48 h and 0.23 p.p.m. at 96 h. Recorded LC50 values for M. carvalhoi are 0.5 p.p.m. and 0.19 p.p.m. at 48 h and 96 h respectively. The results document that these two species, although inhabiting the same area in the tidal belt, exhibit clear differences in mercury resistance. It is further shown that the duration of exposure affects mortality rates. In sub-lethal concentration, between 0.01 and 0.10 p.p.m. decrease in pedal-gland activity is conspicuous in P. viridis. At concentrations much below LC50 values (at 96 h), although some animals are alive, pedal-gland activity is totally suspended, supporting the assumption that shell closure ability plays a minor role in byssus thread production. In M. carvalhoi total cessation of pedal gland activity occurred at 0.09 p.p.m. of mercury.
Resumo:
Chitosan from prawn waste was used for the removal of mercury from solutions. Mercuric chloride solutions containing 250, 500, 1000, 10000 and 100000 ng of Hg super(+2)/ml were treated with chitosan samples of different particle size for different periods. The effect of initial concentration of mercury in the solution, particle size of chitosan and time of treatment on the adsorption of Hg super(+2) was studied. The residual mercury content after treatment for ten min. with chitosan of 40 mesh size from a solution of initial concentration 10000 ng/ml was 10 ng/ml whereas it was 50 ng/ml for chitosan of larger particle size (10-20 mesh). From solutions of lower concentrations complete removal of mercury was possible by chitosan treatment. Though the particle size and time of treatment have significant effect, the concentration of mercury in solution is more influential on the removal of mercury from solution.
Resumo:
Three species of intertidal filter feeding bivalves (Modiolus carvalhoi, Modiolus sp. and Donax spiculum) exposed to mercury and cadmium filtered significantly less volume of water under individual metal and metal mixture stress. Mercury and cadmium in mixtures interacted additively and more than additively (Synergism) in depressing the filtration rate of the bivalves.