20 resultados para MATING
em Aquatic Commons
Resumo:
The timing and duration of the reproductive cycle of Atka mackerel (Pleurogrammus monopterygius) was validated by using observations from time-lapse video and data from archival tags, and the start, peak, and end of spawning and hatching were determined from an incubation model with aged egg samples and empirical incubation times ranging from 44 days at a water temperature of 9.85°C to 100 days at 3.89°C. From June to July, males ceased diel vertical movements, aggregated in nesting colonies, and established territories. Spawning began in late July, ended in mid-October, and peaked in early September. The male egg-brooding period that followed continued from late November to mid-January and duration was highly dependent on embryonic development as affected by ambient water temperature. Males exhibited brooding behavior for protracted periods at water depths from 23 to 117 m where average daily water temperatures ranged from 4.0° to 6.2°C. Knowledge about the timing of the reproductive cycle provides a framework for conserving Atka mackerel populations and investigating the physical and biological processes influencing recruitment.
Resumo:
Reproduction of Hydatina physis was studied in a population from Karachi, Pakistan, including mating and egg laying behavior, spawn characteristics and development.Individuals first appear in the field in October and remain until March. The spawning occurs from mid-November till mid-February with a peak in December. During this period the individuals were also observed pairing. In captivity, mating lasts for 30 minutes, second mating occurs two days later. Oviposition occurs in a very interesting and unusual manner. The mother turns "up-side-down" with its food fully expanded and the shell completely hidden underneath, the expanded foot serves as protective cover to the eggs. Eggs are deposited in a complexly folded mass with a short stem and an adhesive disc. Capsules, arranged in a single layer, contain 4-6 eggs each of wich is 70 um in diameter. Development is planktotrophic and veligers hatch after 14 days at a temperature of 26-28 degrees Celsius.
Resumo:
An illustrated description is given of the courtship and mating behaviour of P. monodon . Courtship and mating follow three distinct phases: (1) parallel swimming of male and female from the bottom to a height of 20-40 cm over distances of 50 to 80 cm; (2) male turns ventral side up to female; and (3) male turns perpendicular to female, arches body around the female and lifts head and tail. Mating is believed to take place generally at night, following moulting of the female. On the basis of thelycum structure and mating pattern, Penaeus may be divided into two groups: (1) those with a close thelycum in which mating follows moulting, such as P. merguiensis and P. monodon ; and (2) those with open thelycum where mating takes place immediately preceding spawning, as in P. stylirostris and P. vannamei .
Resumo:
During June 1974 the California Department of Fish and Game, in cooperation with the Sea Grant program at Moss Landing Marine Laboratories, conducted an exploratory fishing cruise that extended from La Jolla to Santa Cruz and included the Channel Islands, concentrating on inshore waters. The cruise was preliminary to the initiation of a major program of squid research and had six objectives: 1) To gather samples of market squid (Lo1igo opa1escens) for population, growth, aging and food chain studies. 2) To locate potential new fishing grounds. 3) To investigate methods for determining spawning intensity. 4) To gather data on oceanographic parameters of the spawning grounds. 5) To make incidental collections as requested by other investigators. 6) To familiarize Sea Grant personnel with the capabilities of the Department's largest research vessel, ALASKA, with respect to squid. Especially good weather and oceanographic conditions persisting throughout the cruise enabled us to make 66 night1ight stations, 17 midwater trawls and eight bottom trawls. Fishable concentrations of squid were discovered in the areas between Cape San Martin and Partington Point, between Pfeiffer Point and Point Sur, and in Carmel Bay, heretofore unfished. Squid spawning off Santa Cruz Island was observed utilizing an underwater observation chamber aboard the vessel. Mating and feeding behavior were observed in shipboard aquaria. PDF contains 28 pages)
Resumo:
Male meiosis was studied in 9 different mating combinations in parental, first, second and backcross generation hybrids of Clarias anguillaris and Heterobranchus longifilis. 27 bivalents were recorded in metaphase I for seven mating combinations. The number of bivalents in F1 hybrid male x C. anguillaris female could not be determined due to a high degree of clumping of the chromosomes. All metaphase I cells observed in female F1 hybrid x male H. longifilis had three complex bivalents consisting of 43.3% giant ring and 56.7% giant rod chromosomes. The number of ring bivalents per cell was higher in parental H. longifilis than parental C. anguillaris. The number of ring bivalents per cell increased from F1 (6.7 and 8.2) to F2 backcross (13.5) hybrid generations indicating increasing chromosomal instability of backcross hybrids over Fl and F2 hybrids
Resumo:
As a contribution to the understanding of comparative social trends within the cetacean family Delphinidae, a 22-month study was conducted on the shortfinned pilot whale, Globicephala macrorhynchus, which has been suggested to have a unique social system in which males and females in the same group are related and mating occurs outside of the group. The individual identification of 495 pilot whales, analysed in daily group association patterns, allowed identification of 46 pods. They were classified as productive or non-productive based on the presence or absence of immature animals. Productive pods were a significantly larger, although 12% of them lacked adult males. Two classes of whales (residents and visitors) were defined by patterns of occurrence,suggesting differential patterns of habitat use. Resident pods occasionally travelled together (41% of all groups) and associations between age and sex classes showed that in mixed-pod groups, the highest ranked associations of the reproductive females were with males from other pods, while within pods, adult males and females associated less. During summer, the proposed peak conception period, pilot whale groups were significantly larger and contained individuals from a significantly greater number of pods. These findings support the hypothesis that males and females mate when associating with individuals from other pods. A comparative analysis of sexual dimorphism, brain size, and testes size, habitat, prey and group size within the 17 delphinid genera identified a correlation between sexual dimorphism and body size, but relative measures of brain size and testes size did not correlate with broad ecological or social classifications. However, a comparison of three delphinid societies identified two distinct male mating systems: males of the small, mono-morphic Tursiops truncatus live in age/sex segregated groups and mate with a number of discrete female communities. Males in the large sexually dimorphic Glob icephala spp. and Orcinus orca mate with associated female pods and yet remain with their female kin. This corresponds to the avunculate social system described in some human societies. It could evolve from a promiscuous mating system where there is little guarantee of paternity and where males that live with their kin increase their inclusive fitness.
Resumo:
Research on the basic reproduction processes of Gammarus is summarized and reviewed, reproductive strategies in males and females being left to two later papers. The author describes the reproductive systems, the development of eggs (oocytes) in the ovaries, courtship and precopulatory amplexus, mating and the production of sperms, egg laying, mortality and diapause.
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
To understand harbor seal social and mating strategies, I examined site fidelity, seasonal abundance and distribution, herd integrity, and underwater behavior of individual harbor seals in southern Monterey Bay. Individual harbor seals (n = 444) were identified by natural markings and represented greater than 80% of an estimated 520 seals within this community. Year to year fidelity of individual harbor seals to southern Monterey Bay coastline was 84% (n = 388), and long-term associations (>2 yrs) among individuals were common (>40%). Consistent with these long-term associations, harbor seals were highly social underwater throughout the year. Underwater social behavior included three primary types: (1) visual and acoustic displays, such as vocalizing, surface splashing, and bubble-blowing; (2) playful or agonistic social behavior such as rolling, mounting, attending, and biting; and (3) signal gestures such as head-thrusting, fore-flipper scratch~ng, and growling. Frequency of these types of behavior was related to seal age, gender, season, and resource availability. Underwater behavior had a variety of functions, including promotion of learning and social development, reduction of aggression and preservation of social bonds by maintaining social hierarchy, and facilitation of mate selection during breeding season. Social behavior among adult males was significantly correlated with vocalization characteristics (r = 0.99, X2 = 37.7, p = 0.00087), indicating that seals may assess their competition based on underwater vocalization displays and adopt individual strategies for attracting females during breeding season based on social status. Individual mating strategies may include defending underwater territories, using scramble tactics, and developing social alliances. (PDF contains 105 pages)
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.
Resumo:
Male blue crabs, Callinectes Sapidus, guard their mates before and after mating, suggesting that the conditions regulating both types of mate guarding dictate individual reproductive success. I tested the hypothesis that large male blue crabs have advantages in sexual competition using experimental manipulations, a simulation model, and field data on crabs from mid-Chesapeake Bay between 1991-1994.
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change.
Resumo:
Fisheries models have traditionally focused on patterns of growth, fecundity, and survival of fish. However, reproductive rates are the outcome of a variety of interconnected factors such as life-history strategies, mating patterns, population sex ratio, social interactions, and individual fecundity and fertility. Behaviorally appropriate models are necessary to understand stock dynamics and predict the success of management strategies. Protogynous sex-changing fish present a challenge for management because size-selective fisheries can drastically reduce reproductive rates. We present a general framework using an individual-based simulation model to determine the effect of life-history pattern, sperm production, mating system, and management strategy on stock dynamics. We apply this general approach to the specific question of how size-selective fisheries that remove mainly males will impact the stock dynamics of a protogynous population with fixed sex change compared to an otherwise identical dioecious population. In this dioecious population, we kept all aspects of the stock constant except for the pattern of sex determination (i.e. whether the species changes sex or is dioecious). Protogynous stocks with fixed sex change are predicted to be very sensitive to the size-selective fishing pattern. If all male size classes are fished, protogynous populations are predicted to crash even at relatively low fishing mortality. When some male size classes escape fishing, we predict that the mean population size of sex-changing stocks will decrease proportionally less than the mean population size of dioecious species experiencing the same fishing mortality. For protogynous species, spawning-per-recruit measures that ignore fertilization rates are not good indicators of the impact of fishing on the population. Decreased mating aggregation size is predicted to lead to an increased effect of sperm limitation at constant fishing mortality and effort. Marine protected areas have the potential to mitigate some effects of fishing on sperm limitation in sex-changing populations.