4 resultados para MATERNAL ERYTHROCYTES
em Aquatic Commons
Resumo:
Maternal effects on the quality of progeny can have direct impacts on population productivity. Rockfish are viviparous and the oil globule size of larvae at parturition has been shown to have direct effects on time until starvation and growth rate. We sampled embryos and preparturition larvae opportunistically from 89 gravid quillback rockfish (Sebastes maliger) in Southeast Alaska. Because the developmental stage and sampling period were correlated with oil globule size, they were treated as covariates in an analysis of maternal age, length, and weight effects on oil globule size. Maternal factors were related to developmental timing for almost all sampling periods, indicating that older, longer, and heavier females develop embryos earlier than younger, shorter, or lighter ones. Oil globule diameter and maternal length and weight were statistically linked, but the relationships may not be biologically significant. Weight-specific fecundity did not increase with maternal size or age, suggesting that reproductive output does not increase more quickly as fish age and grow. Age or size truncation of a rockfish population, in which timing of parturition is related to age and size, could result in a shorter parturition season. This shortening of the parturition season could make the population vulnerable to fluctuating environmental conditions.
Resumo:
The influences of age, size, and condition of spawning females on fecundity and oocyte quality were analyzed for the Patagonian stock of Argentine Hake (Merluccius hubbsi). Samples of mature females were collected in the spawning area as part of 2 research surveys conducted in January 2010 and 2011, during the peak of the reproductive season. Batch fecundity (BF) ranged between 40,500 (29 cm total length [TL]) and 2,550,000 (95 cm TL) hydrated oocytes, and was positively correlated with TL, gutted weight, age, hepatosomatic index (HSI), and the relative condition factor (Kn). Relative fecundity ranged between 85 and 1040 hydrated oocytes g–1 and showed significant positive relationships with gutted weight, HSI, and Kn; however, coefficients of determination were low for all regressions. Dry weights of samples of 100 hydrated oocytes ranged between 1.8 and 3.95 mg and were positively correlated with all variables analyzed, including batch and relative fecundity. Multiple regression models created with data of the morphophysiological characteristics of females supported maternal influences on fecundity and egg weights. Within the studied size range (29–95 cm TL), larger individuals had better somatic and egg condition, mainly revealed by higher HSI and hydrated oocytes with larger oil droplets (275.71μm [standard error 1.49]). These results were associated with the higher feeding activity of larger females during the spawning season in comparison with the feeding activity of young individuals (<5 years old); the better nutritional state of larger females, assumed to result from more feeding, was conducive to greater production of high-quality eggs.
Resumo:
Major histocompatibility complex genes are thought to be involved in allogeneic graft rejection but not many reports are available on their functional analysis in fish. Analysis of available sequences of MHC genes suggests functions in antigen presentation similar to those found in higher vertebrates. In mammals, the MHC class I and class II molecules are major determinants of allogeneic graft rejection due to their polymorphism in conjunction with their antigen presenting function. In fish, MHC class H molecules are found to be involved in rejection of allogeneic scale grafts. The present study was designed to investigate the involvement of MHC class I molecules in allograft rejection. Erythrocytes were collected from donors of rainbow trout expressed different class MHC class I alleles, stained with two dyes, mixed and grafted to the recipients that were of the same sibling group as the donors. The grafts were rejected by allogeneic recipients and the MHC class I linkage group was the major determinant for the rejection.