75 resultados para Loggerhead turtle.

em Aquatic Commons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researchers compared nest architecture in loggerhead sea turtles at natural beaches in Florida, USA and Brazil to determine how similarities and differences in female morphology and reproductive output in these two populations are reflected in the structure of the nest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trawling was conducted in the Charleston, South Carolina, shipping channel between May and August during 2004–07 to evaluate loggerhead sea turtle (Caretta caretta) catch rates and demographic distributions. Two hundred and twenty individual loggerheads were captured in 432 trawling events during eight sampling periods lasting 2–10 days each. Catch was analyzed by using a generalized linear model. Data were fitted to a negative binomial distribution with the log of standardized sampling effort (i.e., an hour of sampling with a net head rope length standardized to 30.5 m) for each event treated as an offset term. Among 21 variables, factors, and interactions, five terms were significant in the final model, which accounted for 45% of model deviance. Highly significant differences in catch were noted among sampling periods and sampling locations within the channel, with greatest catch furthest seaward consistent with historical observations. Loggerhead sea turtle catch rates in 2004–07 were greater than in 1991–92 when mandatory use of turtle excluder devices was beginning to be phased in. Concurrent with increased catch rates, loggerheads captured in 2004–07 were larger than in 1991–92. Eighty-five percent of loggerheads captured were ≤75.0 cm straight-line carapace length (nuchal notch to tip of carapace) and there was a 3.9:1 female-to-male bias, consistent with limited data for this location two decades earlier. Only juvenile loggerheads ≤75.0 cm possessed haplotypes other than CC-A01 or CC-A02 that dominate in the region. Six rare and one un-described haplotype were predominantly found in June 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, students, regulatory personnel, managers, and volunteers representing 38 countries. In addition to the United States, participants represented Australia, Austria, the Bahamas, Bonaire, Bermuda, Brazil, Canada, Colombia, Costa Rica, Croatia, Cuba, Cyprus, Dominican Republic, Ecuador, England, Guatemala, Greece, Honduras, India, Italy, Japan, Madagascar, Malaysia, Mexico, The Netherlands, Nicaragua, Peru, Philippines, Republic of Seychelles, Scotland, Spain, Sri Lanka, Switzerland, Taiwan, Turkey, Uruguay, and Venezuela. In addition to the 79 oral, 2 video, and 120 poster presentations, 3 workshops were offered: Selina Heppell (Duke University Marine Laboratory) provided “Population Modeling,” Mike Walsh and Sam Dover (Sea World-Orlando) conducted “Marine Turtle Veterinary Medicine” and “Conservation on Nesting Beaches” was offered by Blair Witherington and David Arnold (Florida Department of Environmental Protection). On the first evening, P.C.H. Pritchard delivered a thoughtful retrospect on Archie Carr that showed many sides of a complex man who studied and wrote about sea turtles. It was a presentation that none of us will forget. The members considered a number of resolutions at the Thursday business meeting and passed six. Five of these resolutions are presented in the Commentaries and Reviews section of Chelonian Conservation and Biology 2(3):442-444 (1997). The symposium was fortunate to have many fine presentations competing for the Archie Carr Best Student Presentations awards. The best oral presentation award went to Amanda Southwood (University of British Columbia) for “Heart rates and dive behavior of the leatherback sea turtle during the internesting interval.” The two runners-up were Richard Reina (Australian National University) for “Regulation of salt gland activity in Chelonia mydas” and Singo Minamikawa (Kyoto University) for “The influence that artificial specific gravity change gives to diving behavior of loggerhead turtles”. The winner of this year’s best poster competition was Mark Roberts (University of South Florida) for his poster entitled “Global population structure of green sea Turtles (Chelonia mydas) using microsatellite analysis of male mediated gene flow.” The two runners-up were Larisa Avens (University of North Carolina-Chapel Hill) for “Equilibrium responses to rotational displacements by hatchling sea turtles: maintaining a migratory heading in a turbulent ocean” and Annette Broderick (University of Glasgow) for “Female size, not length, is a correlate of reproductive output.” The symposium was very fortunate to receive a matching monetary and subscription gift from Anders J. G. Rhodin of the Chelonian Research Foundation. These enabled us to more adequately reward the fine work of students. The winners of the best paper and best poster awards received $400 plus a subscription to Chelonian Conservation and Biology. Each runner up received $100. The symposium owes a great debt to countless volunteers who helped make the meeting a success. Those volunteers include: Jamie Serino, Alan Bolton, and Karen Bjorndal, along with the UF students provided audio visual help, John Keinath chaired the student awards committee, Mike Salmon chaired the Program Commiteee, Sheryan Epperly and Joanne Braun compiled the Proceedings, Edwin Drane served as treasurer and provided much logistical help, Jane Provancha coordinated volunteers, Thelma Richardson conducted registration, Vicki Wiese coordinated food and beverage services, Jamie Serino and Erik Marin coordinated entertainment, Kenneth Dodd oversaw student travel awards, Traci Guynup, Tina Brown, Jerris Foote, Dan Hamilton, Richie Moretti, and Vicki Wiese served on the time and place committee, Blair Witherington created the trivia quiz, Tom McFarland donated the symposium logo, Deborah Crouse chaired the resolutions committee, Pamela Plotkin chaired the nominations committee, Sally Krebs, Susan Schenk, and Larry Wood conducted the silent auction, and Beverly and Tom McFarland coordinated all 26 vendors. Many individuals from outside the United States were able to attend the 17th Annual Sea Turtle Symposium thanks to the tireless work of Karen Eckert, Marydele Donnelly, and Jack Frazier in soliciting travel assistance for a number of international participants. We are indebted to those donating money to the internationals’ housing fund (Flo Vetter Memorial Fund, Marinelife Center of Juno Beach, Roger Mellgren, and Jane Provancha). We raise much of our money for international travel from the auction; thanks go to auctioneer Bob Shoop, who kept our auction fastpaced and entertaining, and made sure the bidding was high. The Annual Sea Turtle Symposium is unequaled in its emphasis on international participation. Through international participation we all learn a great deal more about the biology of sea turtles and the conservation issues that sea turtles face in distant waters. Additionally, those attending the symposium come away with a tremendous wealth of knowledge, professional contacts, and new friendships. The Annual Sea Turtle Symposium is a meeting in which pretenses are dropped, good science is presented, and friendly, open communication is the rule. The camaraderie that typifies these meetings ultimately translates into understanding and cooperation. These aspects, combined, have gone and will go a long way toward helping to protect marine turtles and toward aiding their recovery on a global scale. (PDF contains 342 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Offshore pound net leaders in the southern portion of Chesapeake Bay in Virginia waters were documented to incidentally take protected loggerhead, Caretta caretta, and Kemp’s ridley, Lepidochelys kempii, sea turtles. Because of these losses, NOAA’s National Marine Fisheries Service (NMFS) in 2004 closed the area to offshore pound net leaders annually from 6 May to 15 July and initiated a study of an experimental leader design that replaced the top two-thirds of the traditional mesh panel leader with vertical ropes (0.95 cm) spaced 61 cm apart. This experimental leader was tested on four pound net sites on the eastern shore of Chesapeake Bay in 2004 and 2005. During the 2 trial periods, 21 loggerhead and Kemp’s ridley sea turtles were found interacting with the control leader and 1 leatherback turtle, Dermochelys coriacea, was found interacting with the experimental leader. Results of a negative binomial regression analysis comparing the two leader designs found the experimental leader significantly reduced sea turtle interactions (p=0.03). Finfish were sampled from the pound nets in the study to assess finfish catch performance differences between the two leader designs. Although the conclusions from this element of the experiment are not robust, paired t-test and Wilcoxon signed rank test results determined no significant harvest weight difference between the two leaders. Kolmogorov-Smirnov tests did not reveal any substantive size selectivity differences between the two leaders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimates of incidental marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for broadbill swordfish, Xiphias gladius, and common thresher shark, Alopias vulpinus, are summarized for the 7-year period, 1996 to 2002. Fishery observer coverage was 19% over the period (3,369 days observed/17,649 days fished). An experiment to test the effectiveness of acoustic pingers on reducing marine mammal entanglements in this fishery began in 1996 and resulted in statistically significant reductions in marine mammal bycatch. The most commonly entangled marine mammal species were the short-beaked common dolphin, Delphinus delphis; California sea lion, Zalophus californianus; and northern right whale dolphin, Lissodelphis borealis. Estimated mortality by species (CV and observed mortality in parentheses) from 1996 to 2002 is 861 (0.11, 133) short-beaked common dolphins; 553 (0.16, 103) California sea lions; 151 (0.25, 31) northern right whale dolphins; 150 (0.21, 27) northern elephant seals, Mirounga angustirostris; 54 (0.41, 10) long-beaked common dolphins, Delphinus capensis; 44 (0.53, 6) Dall’s porpoise, Phocoenoides dalli; 19 (0.60, 5) Risso’s dolphins, Grampus griseus; 11 (0.71, 2) gray whales, Eschrichtius robustus; 7 (0.83, 2) sperm whales, Physeter macrocephalus; 7 (0.96, 1) short-finned pilot whales, Globicephala macrorhychus; 12 (1.06, 1) minke whales, Balaenoptera acutorostrata; 5 (1.05, 1) fin whales, Balaenoptera physalus; 11 (0.68, 2) unidentified pinnipeds; 33 (0.52, 4) leatherback turtles, Dermochelys coriacea; 18 (0.57, 3) loggerhead turtles, Caretta caretta; 13 (0.73, 3) northern fulmars, Fulmarus glacialis; and 6 (0.86, 2) unidentified birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incidental capture in fishing gear is one of the main sources of injury and mortality of juvenile and adult sea turtles (NRC, 1990; Lutcavage et al., 1997; Oravetz, 1999). Six out of the seven extant species of sea turtles — the leatherback (Dermochelys coriacea), the green turtle (Chelonia mydas), the loggerhead (Caretta caretta), the hawksbill (Eretmochelys imbricata), the olive ridley (Lepidochelys olivacea), and the Kemp’s ridley (Lepidochelys kempii) — are currently classified as endangered or critically endangered by the World Conservation Union (IUCN, formerly the International Union for Conservation of Nature and Natural Resources), which makes the assessment and reduction of incidental capture and mortality of these species in fisheries priority conservation issues (IUCN/Species Survival Commission, 1995).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies have applied skeletochronology to sea turtle species. Because many of the studies have lacked validation, the application of this technique to sea turtle age estimation has been called into question. To address this concern, we obtained humeri from 13 known-age Kemp’s ridley (Lepidochelys kempii) and two loggerhead (Caretta caretta) sea turtles for the purposes of examining the growth marks and comparing growth mark counts to actual age. We found evidence for annual deposition of growth marks in both these species. Corroborative results were found in Kemp’s ridley sea turtles from a comparison of death date and amount of bone growth following the completion of the last growth mark (n=76). Formation of the lines of arrested growth in Kemp’s ridley sea turtles consistently occurred in the spring for animals that strand dead along the mid- and south U.S. Atlantic coast. For both Kemp’s ridley and loggerhead sea turtles, we also found a proportional allometry between bone growth (humerus dimensions) and somatic growth (straight carapace length), indicating that size-at-age and growth rates can be estimated from dimensions of early growth marks. These results validate skeletochronology as a method for estimating age in Kemp’s ridley and loggerhead sea turtles from the southeast United States.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimates of instantaneous mortality rates (Z) and annual apparent survival probabilities (Φ) were generated from catch-curve analyses for oceanic-stage juvenile loggerheads (Caretta caretta) in the waters of the Azores. Two age distributions were analyzed: the “total sample” of 1600 loggerheads primarily captured by sighting and dipnetting from a variety of vessels in the Azores between 1984 and 1995 and the “tuna sample” of 733 loggerheads (a subset of the total sample) captured by sighting and dipnetting from vessels in the commercial tuna fleet in the Azores between 1990 and 1992. Because loggerhead sea turtles begin to emigrate from oceanic to neritic habitats at age 7, the best estimates of instantaneous mortality rate (0.094) and annual survival probability (0.911) not confounded with permanent emigration were generated for age classes 2 through 6. These estimates must be interpreted with caution because of the assumptions upon which catch-curve analyses are based. However, these are the first directly derived estimates of mortality and survival probabilities for oceanic-stage sea turtles. Estimation of survival probabilities was identified as “an immediate and critical requirement” in 2000 by the Turtle Expert Working Group of the U.S. National Marine Fisheries Service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea turtles are subjected to involuntary submergence and potential mortality due to incidental capture by the commercial shrimp fishing industry. Despite implementation of turtle excluder devices (TEDs) to reduce at-sea mortality, dead stranded turtles continue to be found in near-record numbers along the coasts of the western Atlantic Ocean and northern Gulf of Mexico. Although this mortality may be due to an increase in the number of turtles available to strand, one alternative explanation is that sea turtles are repetitively submerged (as one fishing vessel follows the path of another) in legal TEDs. In the present study, laboratory and field investigations were undertaken to examine the physiological effects of multiple submergence of loggerhead sea turtles (Caretta caretta). Turtles in the laboratory study were confined during the submersion episodes, whereas under field conditions, turtles were released directly into TED-equipped commercial fishing nets. Under laboratory and field conditions, pre- and postsubmergence blood samples were collected from turtles submerged three times at 7.5 min per episode with an in-water rest interval of 10, 42, or 180 min between submergences. Analyses of pre- and postsubmergence blood samples revealed that the initial submergence produced a severe and pronounced metabolic and respiratory acidosis in all turtles. Successive submergences produced significant changes in blood pH, Pco2, and lactate, although the magnitude of the acid-base imbalance was substantially reduced as the number of submergences increased. In addition, increasing the interval between successive submergences permitted greater recovery of blood homeostasis. No turtles died during these studies. Taken together, these data suggest that repetitive sub-mergence of sea turtles in TEDs would not significantly affect their survival potential provided that the animal has an adequate rest interval at the surface between successive submergences.