36 resultados para Life stages
em Aquatic Commons
Resumo:
Early life stages (ELS) of Clarias gariepinus were found to be less sensitive to acute dieldrin toxicity than ELS of Nile tilapia, Oreochromis niloticus; 96 h LC50 for 37 day old fry were 11.7 and 4.95pg/l, respectively. Growth of O. niloticus fry was significantly reduced in 22.4 pg/l dieldrin whereas growth of C. gariepinus fry was unaffected. Adult C. gariepinus rapidly absorbed dieldrin from aquaeous solution and accumulated it in their tissues, especially in the liver where after 30 days in 4.0 pg/l bioconcentration was close to 1000 fold. Chronic exposure of C. gariepinus to dieldrin had no effect on blood haematocrit and haemoglobin, but appeared to slow the growth of catfish, and had a clear negative effect on the reproductive potential of mature females
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
Adult steelhead (Oncorhynchus mykiss irideus) scales were analyzed from eight fall-run, two spring-run, and one winter-run stocks within the Klamath-Trinity River system, from 1981 through 1983, to provide basic information on age, growth, and life history. The higher degree of half-pounder occurrence of upper Klamath River steelhead stocks (86.7 to 100%) compared to Trinity River steelhead stocks (32.0 to 80.0%) was the major life history difference noted in scale analysis. Early life history was similar for all areas sampled with most juveniles (86.4%) remaining in freshwater during the first two years of life before migrating to sea. Repeat spawning ranged from 17.6 to 47.9% for fall-run, 40.0 to 63.6% for spring-run, and 31.1% for winter-run steelhead. Mean length of adults at first spawning was inversely related to percent half-pounder occurrence in each stock. Ages of returning spawners, back calculated lengths at various life stages, and growth information are presented. (PDF contains 22 pages)
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.
Resumo:
Ontogenetic patterns in the percent dry weight (%DW) and energy density (joules per gram of wet weight) were studied in the early life stages of the subtropical estuarine and marine gray snapper Lutjanus griseus and the warmtemperate estuarine and marine spotted seatrout Cynoscion nebulosus. The %DW was variable for individuals of both species but increased significantly through larval to juvenile stages (<20% for fish ,50 mm standard length to 20–30% for fish >50 mm). The lipid percentage, which was determined only for gray snapper, was also variable between individuals but showed significant increase with body size. Strong relationships between percent dry weight and energy density were evident for both species; however, the slopes of regressions were significantly lower than in general multispecies models, demonstrating the need for species- and stagespecific energy density data in bioenergetics models.
Resumo:
The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)
Resumo:
About 72 species of Sebastes (Family Scorpaenidae) are found along the eastern Pacific coast of North America, some of which are heavily exploited by both commercial and sport fisheries. Because of the large number of species, the identification of early life stages has progressed slowly. The objectives of this study were 1) to rear the larvae of four species of rockfish (Sebastes mystinus, S. carnatus, S. atrovirens, and S. rastrelliger); and 2) to describe the larvae using morphometric measurements, pigmentation patterns, and head spination. Pigmentation was the most useful feature for identification purposes. Two general patterns were found: 1) a short row of ventral midline melanophores on the tail, and none or very little postero-dorsal pigmentation (S. mystinus); and 2) complete ventral midline pigmentation on the tail, and anterior and postero-dorsal melanophores (S. carnatus, S. atrovirens, and S. rastrelliger). With the exception of very early stages of S. carnatus and S. atrovirens, these species can be readily identified. Morphometric proportions and head spination did not show major differences among species. Because of the great similarities found among species in this genus, descriptions from field studies are uncertain to some extent. Laboratory rearings, although difficult, can at least provide early larvae from known species which allow precise identification as well as an estimation ofvariability of characters (e.g., pigmentation) within and between broods.(PDF file contains 22 pages.)
Resumo:
This bibliography covers the literature up to the end of 1978. The criteria used in the selection of references were that they should aid identification of invertebrates directly; thus, works solely concerned with the taxonomy of a particular group are in general omitted unless they contain a key. Some check-lists are however included where they give current nomenclature. The references are arranged alphabetically within each group and deal mainly with macro-invertebrates but include available keys to some microscopic invertebrates. Internal parasites and hymenopterous parasitoids are omitted. For insects the life stages to which the key applies are given where this is not clear in the reference. A number of keys to non-aquatic stages have been included in the hope that they may prove useful in certain circumstances. In addition, under a general head, latest check-lists are referred to together with bibliographies of algal keys and a guide for the identification of British water plants.
Resumo:
This report summarises the findings of a series of electric-fishing surveys carried out at four sites on the River Ribble from September 1997 to September 1998. The aims of these surveys were to assess the impact on juvenile salmonids of a pollution incident involving Synthetic Pyrethrin (SP) that occurred near High Birkwith I (SD 802 767) in September 1997.One of these sites was 2.65km upstream of the pollution whilst the remaining three were at varying distances downstream. Data was collected during surveys of the River Ribble in 1992, 97 and 98. The 1997 and 1998 surveys were carried out specifically to monitor for any possible effects of the SP discharge. Data are shown as grades derived from the National Fisheries Classification scheme (NFC). Results are given for the four salmonid life stages; 0+ trout, >0+ trout, 0+ salmon, >0+ salmon and also Total Salmonids.
Resumo:
Walleye pollock (Theragra chalcogramma) is widely distributed in the North Pacific Ocean and plays an important role in coastal subarctic ecosystems. The Japanese Pacific population of this species is one of the most important demersal fishes for commercial fisheries in northern Japan. The population is distributed along the Pacific coast of Hokkaido and the Tohoku area (Fig. 1), which is the southern limit of distribution of the species in the western North Pacific. In Funka Bay, the main spawning ground for this population, pollock spawn from December to March (Kendall and Nakatani, 1992). Planktonic eggs and larvae are transported into the bay, where juveniles usually remain until late July when they reach 60−85 mm in total length (Hayashi et al., 1968; Nakatani and Maeda, 1987). These juvenile pollock then migrate from Funka Bay eastward to the Doto area off southeastern Hokkaido (Honda et al., 2004). Many studies on eggs, larvae, and juveniles of the species have been conducted in or near Funka Bay, but little information is available on the ecology of the early life stages in the Tohoku area. Hashimoto and Ishito (1991) suggested that eggs are transported from Funka Bay southward to the Tohoku area by the coastal branch of the Oyashio Current, but there has been no study to verify this hypothesis.
Resumo:
The number of pelagic fish eggs (cod and cunner) found in stomachs of capelin (Mallotus villosus) sampled in coastal Newfoundland was used to estimate the encounter rates between capelin and prey, and thus the effective volume swept by capelin. Fish eggs were found in 4−8% of capelin stomachs, represented an average of 1% of prey by numbers, and their abundance increased as relative stomach fullness decreased. The average number of eggs per stomach doubled for each 5-cm increase in length of capelin. The effective volume swept for eggs by capelin ranged from 0.04 to 0.84 m3/h—a rate that implies either very slow capelin swimming speeds (<1 cm/s) or that fish eggs are not strongly selected as prey. The predation rate estimated from stomach contents was higher than that predicted from laboratory studies of feeding pelagic fish and lower than that predicted by a simple foraging model. It remains uncertain whether capelin play an important regulatory role in the dynamics of early life stages of other fish.
Resumo:
This paper provides an historical review of homarid lobster fisheries, the development and usage of lobster hatcheries, and much of the research influenced by hatchery-initiated studies on natural history, physiology, and morphological development of the lobster, Homarus spp. Few commercial lobster hatcheries exist in the world today, yet their potential usage in restocking efforts in various countries is constantly being reexamined, particularly when natural stocks are considered “overfished.” Furthermore, many individual researchers working on homarid lobsters use smallscale hatchery operations to provide the animals necessary for their work as well as animals reared and provided by various governmental agencies interested in specific projects on larvae, postlarvae, or juveniles. Such researchers can benefi t from the information in this review and can avoid many pitfalls previously documented. The development of hatcheries and the experimental studies that were generated from their activities have had a direct impact on much of the research on lobsters. The past work arising from hatchery operations—descriptions of life stages, behavior, physiology, etc.—has generally been confirmed rather than refuted and has stimulated further research important for an understanding of the life history of homarid lobsters. The connections between homarid fisheries and hatchery operations (i.e. culturing of the lobsters), whether small- or large-scale for field and laboratory research, are important to understand so that better tools for fishery management can be developed. This review tries to provide such connections. However, the rearing techniques in use in today’s hatcheries—most of which are relics from the past—are clearly not effi cient enough for large-scale commercial aquaculture of lobsters or even for current restocking efforts practiced by several countries today. If hatcheries are to be used to supplement homarid stocks, to restock areas that were overfished, or to reintroduce species into their historical ranges, there is a clear need to further develop culture techniques. This review should help in assessments of culturing techniques for Homarus spp. and provide a reference source for researchers or governmental agencies wishing to avoid repeating previous mistakes.
Resumo:
This report contains a chemical and biological characterization of sediments from the St. Thomas East End Reserves (STEER) in St. Thomas, U.S. Virgin Islands (USVI). The STEER Management Plan (published in 2011) identified chemical contaminants and habitat loss as high or very high threats and called for a characterization of chemical contaminants as well as an assessment of their effects on natural resources. The baseline information contained in this report on chemical contaminants, toxicity and benthic infaunal community composition can be used to assess current conditions, as well as the efficacy of future restoration activities. In this phase of the project, 185 chemical contaminants, including a number of organic (e.g., hydrocarbons and pesticides) and inorganic (e.g., metals) compounds, were analyzed from 24 sites in the STEER. Sediments were also analyzed using a series of toxicity bioassays, including amphipod mortality, sea urchin fertilization impairment, and the cytochrome P450 Human Reporter Gene System (HRGS), along with a characterization of the benthic infaunal community. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area than in the eastern area. The concentrations of polychlorinated biphenyls (PCBs), DDT (dichlorodiphenyltrichloroethane), chlordane, zinc, copper, lead and mercury were above a NOAA sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages in the benthic environment. Copper at one site in Benner Bay, however, was above a NOAA guideline indicating that effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin, or TBT, was found at the third highest concentration in the history of NOAA’s National Status and Trends (NS&T) Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants and bioeffects. Unfortunately, there do not appear to be any established sediment quality guidelines for TBT. Results of the bioassays indicated significant sediment toxicity in Mangrove Lagoon and Benner Bay using multiple tests. The benthic infaunal communities in Mangrove Lagoon and Benner Bay appeared severely diminished.