8 resultados para Lee, Ann, 1736-1784
em Aquatic Commons
Resumo:
The submersed plants hydrilla (Hydrilla verticillata (L.f.) Royle) and elodea (Elodea canadensis Rich.) are both members of the Hydrocharitaceae family and cause problems in waterways throughout the world. Diquat (6,7-dihydrodipyrido[1,2-α:2’,1’-c]pyrazinediium dibromide) is a contact herbicide used to control nuisance submersed and floating aquatic macrophytes. There is no readily available information in the literature on the control of elodea under various diquat concentration and exposure times (CET) and other than a study by Van et. al 1987, little on hydrilla. Since CET relationships are critical in controlling submersed plants in areas influenced by water exchange, this study was designed to evaluate the efficacy of diquat on hydrilla and elodea under various CET scenarios. (PDF has 3 pages.)
Resumo:
Secondary metabolites are produced by aquatic plants, and in some instances, exudation of these metabolites into the surrounding water has been detected. To determine whether infestations of Eurasian watermilfoil or hydrilla produce such exudates, plant tissues and water samples were collected from laboratory cultures and pond populations and were analyzed using solid phase extraction, HPLC, and various methods of mass spectrometry including electrospray ionization, GC/MS, electron impact and chemical ionization. Previously reported compounds such as tellimagrandin II (from Eurasian watermilfoil) and a caffeic acid ester (from hvdrilla), along with a newly discovered flavonoid, cyanidin 3 dimalonyl glucoside (from hydrilla), were readily detected in plant tissues used in this research but were not detected in any of the water samples. If compounds are being released, as suggested by researchers using axenic cultures, we hypothesize that they may be rapidly degraded by bacteria and therefore undetectable.
Resumo:
Results of recent field trials using the chelated copper formulation Clearigate® 4 showed that applying a 20% solution by volume was effective for controlling populations of giant salvinia in irrigation canals. 5 Lower rates may be efficacious, thereby reducing chemical use and cost; however, little is known about the dose-response effects of Clearigate® against giant salvinia. The objective of this study was to determine the effective rate range of chelated copper applied as Clearigate® for control of giant salvinia.
Resumo:
Upward leakage of saline water from an artesian aquifer below 1,500 feet has caused an increase in chloride concentration in the lower Hawthorn aquifer from less than 1,000 mg/1 (milligrams per liter) to values ranging from about 1,300 to 15,000 mg/1. Similarly the higher temperatures of the intruding water has caused an increase in water temperatures in the aquifer from 82"F to values ranging from 83 to 93"F. The intruding water moves upward either through the open bore hole of deep wells or test holes, or along a fault or fracture system, which has been identified in the area. From these points of entry into the lower Hawthorn aquifer, the saline water spreads laterally toward the south and southeast, but is generally confined to components of the fault system. The saline water moves upward from the lower Hawthorn aquifer into the upper Hawthorn aquifer through the open bore hole of wells, which connect the aquifers. This movement has resulted in an increase in chloride from less than 200 mg/1 in the unaffected parts of the upper Hawthorn aquifer to values commonly ranging from about 300 to more than 3,000 mg/1 in parts of the aquifer affected by upward leakage. The upper Hawthorn aquifer is the principal source of ground-water supply for public water-supply systems in western Lee County. Similar effects have been noted in the water-table aquifer, where chloride increased from less than 100 to concentrations ranging from about 500 to more than 5,000 mg/1. This was caused by the downward infiltration of water discharged at land surface from wells tapping the lower Hawthorn aquifer. The spread of saline water throughout most of the McGregor Isles area is continuing as of 1971. (40 page document)
Resumo:
Report seeks to address following questions: 1. Where within Lee County are surface supplies of water located? 2. What are the variations in this supply? 3. What can be done to provide better answers to questions 1 and 2 than are available at the present time? (PDF contains 76 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)