11 resultados para Law 962 from 2005
em Aquatic Commons
Resumo:
Atlantic herring (Clupea harengus) is an ecologically and economically valuable species in many food webs, yet surprisingly little is known about the variation in the nutritional quality of these fish. Atlantic herring collected from 2005 through 2008 from the Bay of Fundy, Canada, were examined for variability in their nutritional quality by using total lipid content (n=889) and fatty acid composition (n=551) as proxies for nutritional value. A significant positive relationship was found between fish length and total lipid content. Atlantic herring also had significantly different fatty acid signatures by age. Fish from 2005 had significantly lower total lipid content than fish from 2006 through 2008, and all years had significantly different fatty acid signatures. Summer fish were significantly fatter than winter fish and had significantly different fatty acid signatures. For all comparisons (ontogenetic, annual, and seasonal) percent concentrations of omega-3, -6, and long-chain monounsaturated fatty acids were the most important for distinguishing between the fatty acid signatures of fish. This study underscores the importance of quantifying variation in prey quality synoptically with prey quantity in food webs over ontogenetic and temporal scales when evaluating the effect of prey nutritional quality on predators and on modeling trophic dynamics.
Resumo:
We developed a habitat suitability index (HSI) model to understand and identify the optimal habitat and potential fishing grounds for neon f lying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Remote sensing data, including sea surface temperature, sea surface salinity, sea surface height, and chlorophyll-a concentrations, as well as fishery data from Chinese mainland squid f leets in the main fishing ground (150–165°E longitude) from August to October, from 1999 to 2004, were used. The HSI model was validated by using fishery data from 2005. The arithmetic mean modeling with three of the environmental variables—sea surface temperature, sea surface height anomaly, and chlorophyll- a concentrations—was defined as the most parsimonious HSI model. In 2005, monthly HSI values >0.6 coincided with productive fishing grounds and high fishing effort from August to October. This result implies that the model can reliably predict potential f ishing grounds for O. bartramii. Because spatially explicit fisheries and environmental data are becoming readily available, it is feasible to develop a dynamic, near real-time habitat model for improving the process of identifying potential fishing areas for and optimal habitats of neon flying squid.
Resumo:
Between July 2005 and February 2008, ten Catch Assessment Surveys (CASs) were conducted at 54 pre-selected fish landing sites in the Ugandan part of Lake Victoria comprising approximately 10% of all landing sites in each of the 11 districts sharing the lake. The CASs were conducted following regionally harmonised Standard Operating Procedures (SOPs). This report covers the CAS conducted in February 2008 and puts into context the trends generated by results of the previous surveys. The catch rates of Nile perch in gillnetting boats with motor/sail, reduced from 26.9 kg boat-1 day-1 in August 2007 to 22.8 kg boat-1 day-1 in February 2008. Whereas the catch rates of paddle Sesse boats remained more or less the same as in August 2007. The Nile perch catch rates of the long line fishery of the boats using motor/sail was similar, 35 and 36 kg boat-1 day-1 in August 2007 and February 2008 respectively but the catch rates of paddle Sesse boats using long lines showed some more increase from 19 to 22 kg boat (-1) day (-1). In the tilapia fishery, the catch rates of the parachute boats using gillnets showed further decrease in a row from 12.6 kg boat-1 day-1 in December 2006, 11.6 kg boat-1 day-1 in March 2007, 11.2 kg boat-1 day-1 in August 2007 and 10.0 kg boat-1 day-1 in February 2008. The overall impact of reduced catch rates in the predominant effort groups, e.g. gillnetting boats using motor/sail in the Nile perch fishery and Parachute boats using gillnets in the tilapia fishery overshadowed the increases in less dominant effort groups and resulted in the lowest monthly catch estimates recorded in the surveys conducted since 2005. Whereas there was a clear downward trend in the Nile perch catch rates of boats using gillnets, which corroborates with the information of declining stocks from the recent Acoustics surveys, the catch rates in the long line fishery remained stable and even somewhat increasing in the last four surveys. The factors that maintain high catches against reduction of fish biomass in the long line fishery and their effects on sustainability of the Nile perch fishery should be investigated further. The Mukene fishery, characterised by large fluctuations in the catch rates did not show much change in the last two surveys in August 2007 and February 2008 and the annual catch estimates showed an overall increase of 7% from 2005 to 2007. The Mukene fishery in the Ugandan waters of Lake Victoria remained a near shore fishery in which paddle Sesse boats using small seines or scoop nets were the dominant craft.
Resumo:
This report presents findings of the CAS conducted in the Ugandan waters of Lake Victoria in May 2011. The results of the previous eleven CASs conducted under the IFMP of the LVFO programme in July, August, September and November 2005; in March, August and December 2006; in March and August 2007; in February and December 2008; and March 2010 are included to show the emerging trends. The report also presents annual catch estimates for the Ugandan part of the lake from 2005 to 2011. Through these CASs, information is building up to show the emerging picture of fish production in the Ugandan waters of the lake. Similar surveys are conducted in the Kenyan and Tanzanian parts of the lake, which provide the lake wide perspective of fisheries production but this time not simultaneously as under the LVFO effort due to different sources and timing of funding. These data can now be utilised together with other Resource and Socio-economic Monitoring survey data for a stock assessment of the lake to provide a firm basis for planning and management of the fisheries resources.
Resumo:
This report presents findings of the CAS conducted in the Ugandan waters of Lake Victoria in March 2010. The results of the previous ten CASs conducted under the same programme in July, August, September and November 2005; in March, August and December 2006; in March, and August 2007; in February and December 2008 are included to show the emerging trends. The report also presents total annual catch estimates for the Ugandan part of the lake from 2005 to 2010.
Resumo:
This report presents findings of the CAS conducted in the Ugandan waters of Lake Victoria in December 2015. The results of the previous thirteen harmonized CASs conducted since July 2005 (July, August, September and November 2005; in March, August and December 2006; in March and August 2007; in February and December 2008; March 2010; May 2011 and May 2014) are included to show the emerging trends. The report also presents annual catch estimates for the Ugandan part of the lake from 2005 to 2015. This information together with other fish stock assessment and socio-economic monitoring survey data can now be utilized in the planning and management of the fisheries resources of Lake Victoria. The 2014 CAS results were very vital in the development of the Lake Victoria Fisheries Management Plan 2014.
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.