11 resultados para Latin language, Vulgar
em Aquatic Commons
Resumo:
Asia/ India - Restricting Lives and Livelihoods. North America/ Mexico - Empowering Agenda?. Africa/ South Africa - Aren’t We Missing Something?. Africa/ Zanzibar - Winning Strategies. Latin America/ Chile - No Equity without Gender Equity. South America/ Ecuador - Banning the Beach Seine. North America/ United States - Walking in Both Sets of Shoes.
Resumo:
Battling against Wind and Tide - Latin America/ Uruguay. Women’s Changing Participation - Oceania/ Pacific Islands. From Challenge to Opportunity - Latin America/ Chile. AKTEA Meets Again - European Union. Why Are We in CONAPE? - Latin America/ Brazil. Women in Fisheries, Policy - Asia/ Philippines. A Disaster in the Making - Asia/ India. Texas Gold - Film.
Resumo:
ADMB2R is a collection of AD Model Builder routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 ADMB2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the ADMB2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer ADMB2R to others in the hope that they will find it useful. (PDF contains 30 pages)
Resumo:
C2R is a collection of C routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 C2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the C2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer C2R to others in the hope that they will find it useful. (PDF contains 27 pages)
Resumo:
For2R is a collection of Fortran routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 For2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the For2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer For2R to others in the hope that they will find it useful. (PDF contains 31 pages)