6 resultados para Late early triassic

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western blue groper (Achoerodus gouldii) is shown to be a temperate protogynous hermaphrodite, which spawns between early winter and mid-spring. Because A. gouldii changes body color at about the time of sex change, its color can be used as a proxy for sex for estimating the size and age at sex change and for estimating growth when it is not possible to use gonads for determining the sex of this fish. The following characteristics make A. gouldii highly susceptible to overfishing: 1) exceptional longevity, with a maximum age (70 years) that is by far the greatest yet estimated for a labrid; 2) slow growth for the first 15 years and little subsequent growth by females; and 3) late maturation at a large total length (TL50 = 653 mm) and old age (~17 years) and 4) late sex change at an even greater total length (TL50 = 821 mm) and age (~35 years). The TL50 at maturity and particularly at sex change exceeded the minimum legal total length (500 mm) of A. gouldii and the lengths of many recreationally and commercially caught fish. Many of these characteristics are found in certain deep-water fishes that are likewise considered susceptible to overfishing. Indeed, although fishing effort for A. gouldii in Western Australia is not particularly high, per-recruit analyses indicate that this species is already close to or fully exploited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Walleye pollock (Theragra chalcogramma) is widely distributed in the North Pacific Ocean and plays an important role in coastal subarctic ecosystems. The Japanese Pacific population of this species is one of the most important demersal fishes for commercial fisheries in northern Japan. The population is distributed along the Pacific coast of Hokkaido and the Tohoku area (Fig. 1), which is the southern limit of distribution of the species in the western North Pacific. In Funka Bay, the main spawning ground for this population, pollock spawn from December to March (Kendall and Nakatani, 1992). Planktonic eggs and larvae are transported into the bay, where juveniles usually remain until late July when they reach 60−85 mm in total length (Hayashi et al., 1968; Nakatani and Maeda, 1987). These juvenile pollock then migrate from Funka Bay eastward to the Doto area off southeastern Hokkaido (Honda et al., 2004). Many studies on eggs, larvae, and juveniles of the species have been conducted in or near Funka Bay, but little information is available on the ecology of the early life stages in the Tohoku area. Hashimoto and Ishito (1991) suggested that eggs are transported from Funka Bay southward to the Tohoku area by the coastal branch of the Oyashio Current, but there has been no study to verify this hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to study the early developmental stages of Nandus nandus an experiment was conducted, where eggs and milt were obtained from the laboratory reared N nandus by stripping after 15 hours of 150 mg/kg body weight of carp PG extract injection. Then the eggs were fertilized in the laboratory and subsequent developmental stages were studied. First cleavage (two cell), four cell, eight cell, sixteen cell and multi cell stages were found 30, 50, 70, 105 and 160 minutes after fertilization respectively. Morula, early gastrula, middle gastrula, late gastrula and yolk plug stages were found 5, 8, 9, 11 and 13 hours after fertilization respectively. Hatching occurred within 20±2 hours after fertilization, and larvae were measured 1.60 mm in diameter. After one hour of hatching two melanophore bands were found at the caudal region of the body of the larvae. Eyes were first observed in l 0 hours, pectoral and pelvic fin buds appeared in 22 hours and well developed in 38 hours old larvae. Mouth cleft and brain lobes were visible when the larvae were 34 and 38 hours old respectively. Myomeres partially appeared in 16 hours, which were clearly visible in 74 hours old larvae. Larvae started wandering and searching for food after 56 hours of hatching. The yolk sac was completely absorbed when larvae became 62 hours old.