30 resultados para Landing operations.
em Aquatic Commons
Resumo:
Energy is a key input into the fish harvesting process. Efficient use of energy helps in reducing operational costs and environmental impact, while increasing profits. Energy optimisation is an important aspect of responsible fishing as enunciated in the Code of Conduct for Responsible Fisheries. Gross Energy Requirement (GER) is the sum of all non-renewable energy resources consumed in making available a product or service and is expressed in energy units per physical unit of product or service delivered. GER is a measure of intensity of non-renewable resource use and it reflects the amount of depletion of earth’s inherited store of non-renewable energy in order to create and make available a product or service. In this study, GER in fish harvesting up to the point of landing is estimated in selected fish harvesting systems in the small-mechanised sectors of Indian fisheries and compared with reported results from selected non mechanised and motorised fishing systems to reflect the situation during 1997-1998. Among the fish harvesting systems studied, GER t fish-1 ranged from 5.54 and 5.91 GJ, respectively, for wooden and steel purse seiners powered by 156 hp engines; 6.40 GJ for wooden purse seiner with 235 hp engine; 25.18 GJ for mechanised gillnet/line fishing vessel with 89 hp engines; to 31.40 and 36.97 GJ, respectively, for wooden and steel trawlers powered by 99-106 hp engines.
Resumo:
In October 1970, Moss Landing Marine Laboratories began an observational program to determine/the seasonal changes in the water chemistry of Elkhorn Slough and Moss Landing Harbor. This data report contains the first year of data (October 1970 - November 1971). These data are of immediate interest in determining the flushing and mixing mechanisms of the slough and in establishing the effect that local domestic and industrial effluents have on the distribution of these chemical parameters. (Document contains 78 Pages)
Resumo:
(PDF contains 55 pages)
Resumo:
In July 1974, we began a two-year baseline study of the Moss Landing Elkhorn Slough marine environment for Pacific Gas and Electric Company as mandated by the Coastal Commission. The original proposal included strong recommendations for more complete oceanographic studies and a third year of data collection. These further studies were not funded. This report is divided into three sections: oceanography, benthic invertebrate ecology and fish and zooplankton ecology. (PDF contains 480 pages)
Resumo:
In July, 1974 we began a baseline study of the Moss Landing-Elkhorn Slough marine environment for PG&E as mandated by the Coastal Commission. This report constitutes results of the first year's program. It is divided into three sections, oceanography, benthic invertebrate ecology, and fish and zooplankton ecology. (PDF contains 226 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
ENGLISH: The fishing power of the tuna purse-seine fleet of the eastern Pacific Ocean has increased since the early 1960's. Because the entire fleet seems to have adopted equipment and techniques to increase its efficiency in capturing tunas, traditional methods of adjusting catch rates to a reference vessel type of fixed efficiency to index tuna abundance from fishing success are inapplicable. Instead, a methodology for such adjustment based on a mathematical representation of purse seining activities is developed. Observed changes in efficiency in subprocesses of purse seining are then used to adjust catch rates when computing abundance histories for yellowfin and skipjack in large regions of the eastern Pacific Ocean. SPANISH: La eficacia de pesca de la flota de cerco atunera en el Océano Pacífico oriental ha aumentado desde el comienzo del decenio de 1960. Como toda la flota parece haber adoptado equipo y métodos para incrementar su eficaciaen capturar atunes, no se pueden aplicar los métodos tradicionales de ajustar los índices de captura a un tipo normalizado de barco (es decir de eficacia fija) para indicar la abundancia del atún según los resultados de pesca. En su lugar se ha desarrollado un método para realizar tal ajuste basado en una representación matemática de las actividades de las embarcaciones de cerco. Cuando se calcula la abundancia histórica del atún aleta amarilla y barrilete en grandes regiones del Océano Pacífico oriental, se usan entonces los cambios observados en la eficacia de los subprocesos cerqueros para ajustar los índices de captura. (PDF contains 120 pages.)
Resumo:
The study examined the sustainability of various indigenous technologies in post-harvest fishery operation in Edo and Delta States (Nigeria). A total of seventy processors were interviewed during the survey through a random selection. The data obtained were analysed by descriptive statistics. The results obtained revealed that the majority of the fish processors within the study areas were married with women who were not educated beyond the first Leaving School Certificate. Most of the fish processed were bought fresh, while the commonest method of preservation/processing practiced was smoking. The type of processing equipment used was the Chorkor smoking kiln and the drum smoker while the commonest source of energy is firewood. The processing activities within the communities were found to be profitable. However it was observed that due to the high cost of processing materials and equipment, the economic growth and the living standard is quite low. Some recommendations were made to improve the traditional method of fish preservation and processing
Resumo:
Two landing sites were chosen in Tanzania for the 4-beaches survey. The former, Ihale, is a large one with an avarage of 120 boats and direct connections to the fish processing factories. The latter, Mwasonge, is one of the smallest landing sites in the Mwanza region with totally different characteristics. This book section aims to analyse the results from these two sites in the context of the co-management potentialities in Tanzania and more generally on the Lake Victoria region.
Resumo:
Diurnal variation in trawl catches and its influence on energy efficiency of trawler operations are discussed in this paper, based on data on landings of a Japanese factory trawler which operated in the Indian waters during 1992-93. The factory vessel equipped for stern trawling had a length overall of 110 m, GT of 5460 and installed engine power of 5700 hp. Operations were conducted off west coast of India between 31 and 278 m depth contours, using a 80.4 m high opening bottom trawl with an adjusted vertical opening of 7.60.9 m. The catch data was grouped according to the median towing hour, by the time of the day. CPUE obtained was 3713.4 kg.h-1 for day time operations and 1536.6 kg.h-1 for night-time operations. Mean daily catches were 31367 kg.day-1 (SE: 2743) for day time operations and 9430 kg.day-1 (SE: 966) for night-time operations. Fuel consumption were 0.399 and 0.982 kg fuel.kg fish-1, respectively for day and night-time operations. Total catch and catch components such as threadfin bream, bulls eye, hairtails, trevelly, lizard fish showed significant improvement during day-time operations while swarming crabs showed a significant improvement in the night-time operations. The difference in catch rates between day and night could be attributed to diurnal variation in the spatial distribution and schooling behaviour of the catch categories, their differential behaviour in the vicinity of trawl systems under varying light levels of day and night and consequent effect on catching efficiency and size selectivity at different stages in the capture process. The results obtained in addition to its importance in the operational planning of trawling in order to realise objectives of maximising catch per unit effort and minimising fuel consumption per unit volume of fish caught, has added significance in the use of bottom trawl surveys in stock abundance estimates.
Resumo:
Commercial longline fishing data were analyzed and experiments were conducted with gear equipped with hook timers and timedepth recorders in the Réunion Island fishery (21°5ʹS lat., 53°28ʹE long.) to elucidate direct and indirect effects of the lunar cycle and other operational factors that affect catch rates, catch composition, fish behavior, capture time, and fish survival. Logbook data from 1998 through 2000, comprising 2009 sets, indicated that swordfish (Xiphias gladius) catch-per unit of effort (CPUE) increased during the first and last quarter of the lunar phase, whereas albacore (Thunnus alalunga) CPUE was highest during the full moon. Swordfish were caught rapidly after the longline was set and, like bigeye tuna (Thunnus obesus), they were caught during days characterized by a weak lunar illumination—mainly during low tide. We found a significant but very low influence of chemical lightsticks on CPUE and catch composition. At the time the longline was retrieved, six of the 11 species in the study had >40% survival. Hook timers indicated that only 8.4% of the swordfish were alive after 8 hours of capture, and two shark species (blue shark [Prionace glauca] and oceanic whitetip shark [Carcharhinus longimanus]) showed a greater resilience to capture: 29.3% and 23.5% were alive after 8 hours, respectively. Our results have implications for current fishing practices and we comment on the possibilities of modifying fishing strategies in order to reduce operational costs, bycatch, loss of target fish at sea, and detrimental impacts on the environment.
Resumo:
Sources of wastes in fishing operations mainly include bycatch discards; processing wastes where catch is processed onboard; plastic wastes due to abandoned, lost and discarded fishing gear; bilges and other wastes from the vessel operations. Fishing systems in general have an associated catch of nontargeted organisms known as bycatch. Non-selective fishing gear that is not modified or equipped to exclude non-targeted organisms, may take a significant quantity of bycatch of non-targeted finfish, juvenile fish, benthic animals, marine mammals, marine birds and vulnerable or endangered species that are often discarded. Average annual global discards, has been estimated to be 7.3 million t, based on a weighted discard rate of 8%, during 1992-2001 period. Trawl fisheries for shrimp and demersal finfish account for over 50% of the total estimated global discards. Plastic materials are extensively used in fisheries, owing to their durability and other desirable properties, contributing to the efficiency and catchability of the fishing gear. However, plastics biodegrade at an extremely slow rate compared to other organic materials. Abandoned, lost or otherwise discarded fishing gear (ALDFG) and related marine debris have been recognized as a critical problem in the marine environment and for living marine resources. Prevention of excess fishing capacity by appropriate management measures could lead to enormous savings in terms of fuel consumption, emissions and bycatch discards from the excess fishing fleet, capital and operational investments and labour deployment in capture fisheries, with significant economic gains. In this paper, wastes originating from fishing operations are reviewed, along with their environmental impacts and possible mitigation measures
Resumo:
Ring seines are lightly constructed purse seines adapted for operation in the traditional sector. Fish production and energy requirement in the ring seine operations, off Cochin, Kerala, India are discussed in this paper, based on data collected during 1997- 1998. The results reflect the Gross Energy Requirement (GER) situation that existed during 1997-1998. Mean catch per ring seiner per year worked out to be 211.9 t of which sardines (Sardinella spp.) constituted 44.3%, followed by Indian mackerel (Rastrelliger kanagurta) 29.7%, carangids 11.4%, penaeid prawns 2.2%, pomfrets 1.1% and miscellaneous fish 11.3%. Total energy inputs into the ring seine operations were estimated to be 1300.8 GJ. Output by way of fish production was determined to be 931.85 GJ. GER is the sum of all non-renewable energy resources consumed in making available a product or service and is a measure of intensity of non-renewable resource use. GER per tonne of fish landed by ring seiners was estimated to be 6.14. Among the operational inputs, kerosene constituted 73.4% of the GER, followed by petrol (12.7%), diesel (6.7%) and lubricating oil (2.4%). Fishing gear contributed 3.8%, engine 0.8% and fishing craft 0.3% of the GER. Energy ratio for ring seining was 0.72 and energy intensity 1.40.
Resumo:
South African (Cape) fur seals, Arctocephalus pusillus pusillus, interact with the South African trawl fisheries-offshore demersal, inshore demersal, and midwater fisheries. These interactions take thef ollowing forms: Seals take or damage netted fish, on particular vessels they become caught in the propeller, seals drown in the nets, live seals come aboard and may be killed. Except in specific cases of seals damaging particular trawler propellers, interactions result in little cost to the offshore and midwater trawl fisheries. For the inshore fishery, seals damage fish in the net at an estimated cost in excess of R69, 728 (US$18,827) per year, but this is negligible (0.3%) in terms ofthe value of the fishery. Seal mortality is mainly caused by drowning in trawl nets and ranges from 2,524 to 3,636 seals of both sexes per year. Between 312 and 567 seals are deliberately killed annually, but this most likely takes place only when caught and they enter the area below deck, where they are difficult to remove, and pose a potential threat to crew safety. Overall, seal mortality during trawling operations is negligible (0.4-0.6%) in terms of the feeding population of seals in South Africa.