2 resultados para Land Surface Temperature
em Aquatic Commons
Resumo:
The changes in time and location of surface temperature from a water body has an important effect on climate activities, marine biology, sea currents, salinity and other characteristics of the seas and lakes water. Traditional measurement of temperature is costly and time consumer due to its dispersion and instability. In recent years the use of satellite technology and remote sensing sciences for data acquiring and parameter and lysis of climatology and oceanography is well developed. In this research we used the NOAA’s Satellite images from its AVHRR system to compare the field surface temperature data with the satellite images information. Ten satellite images were used in this project. These images were calibrated with the field data at the exact time of satellite pass above the area. The result was a significant relation between surface temperatures from satellite data with the field work. As the relative error less than %40 between these two data is acceptable, therefore in our observation the maximum error is %21.2 that can be considered it as acceptable. In all stations the result of satellite measurements is usually less than field data that cores ponds with the global result too. As this sea has a vast latitude, therefore the different in the temperature is natural. But we know this factor is not the only cause for surface currents. The information of all satellites were images extracted by ERDAS software, and the “Surfer” software is used to plot the isotherm lines.
Resumo:
Southeast region of the country has hot and dry weather which causes to happen heavy rainfall in short time period of warm seasons and to occur river flooding. These precipitations are influenced by monsoon system of India ocean. In these thesis, It was tried to evaluate the relation between thermal anomaly of sea surface in India ocean and Arab sea which effects on southeast monsoon precipitations of Iran, For evaluation of this happening in southeast, data were collected from 7 synoptic observation stations of Bandar Abbas, Minab, Kerman , Bam, Chabahar, Iranshahr, Zahedan and 17 rain gauge stations during June to September of each year from 1980 to 2010. Rainy days were determine and then some information about synoptic circulation models, maps of average pressure of sea surface, geopotential height of 700hP surface, geopotential height of 500hP surface, temperature of 850 hPa surface, humidity of 700 hPa surface, vertical velocity of 700 hPa surface, vertical velocity of 500 hP and humidity of 2 meters height for 6 systems were extracted from NCEP/NCAR website for evaluation. By evaluation of these systems it was determined that the monsoon low pressure system tab brings needed humidity of these precipitations to this region from India ocean and Arab sea with a vast circulation. It is seen that warm air pool locates on Iran and cold air pool locates on west of India at 800 hPa surface. In a rainy day this warm air transfers to high latitudes and influences the temperature trough of southeast cold air pool of the country. In the middle surfaces of 700 and 500 hPa, the connection between low height system above India and low height system above the higher latitudes causes the low height system above India to be strength and developed. By evaluation of humidity at 2 meters height and 700 hPa surface we observe that humidity Increases in the southeast region. With penetrating of the low height system of India above the 700 and 500 hPa surfaces of southeast of Iran, the value of negative omega (Rising vertical velocity) is increased. In the second pace, it was shown the evaluation of how the correlation between sea surface temperature anomaly in India Ocean and Arab sea influences southeast monsoon precipitation of Iran. For this purpose the data of water surface temperature anomaly of Arab sea and India ocean, the data of precipitation anomaly of 7 synoptic stations , mentioned above, and correlation coefficient among the data of precipitation anomaly and water surface temperature anomaly of Arab Sea, east and west of India ocean were calculated. In conclusion it was shown that the maximum correlation coefficient of precipitation anomaly had belonged to India Ocean in June and no meaningful correlation was resulted in July among precipitation anomaly and sea surface temperature anomaly for three regions, which were evaluated.