7 resultados para Land Mobile Radio Cellular Systems
em Aquatic Commons
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
Geographic Information Systems can help improve ocean literacy and inform our understanding of the human dimensions of marine resource use. This paper describes a pilot project where GIS is used to illustrate the connections between fish stocks and the social, cultural, and economic components of the fishery on land. This method of presenting and merging qualitative and quantitative data represents a new approach to assist fishery managers, participants, policy-makers, and other stakeholders in visualizing an often confusing and poorly understood web of interactions. The Atlantic herring fishery serves as a case study and maps from this pilot project are presented and methods reviewed.
National Centers for Coastal Ocean Science Coastal Ecosystem Assessment Program: a manual of methods
Resumo:
Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.
Resumo:
Paddy fields can be broadly classified on the basis of land situations viz. Upland - Shallow water (10-30 cm), Medium land-medium deepwater (30-100 cm) and Low land-deepwater (above 100 cm). Three major systems of paddy-cum-fish culture, viz. (A) high yielding paddy varieties (H.Y.V) and air-breathing fish under Upland, (B) H.Y.V./local paddy and Tilapia/common carp under Medium land and (C) deepwater paddy and major Indian carps under Low land situations have been successfully investigated in the farmers' fields and at the Research Stations (1982-92). Effects of low-cost artificial feeding on growth, yield and management practices of different types of fish showed a considerable increase of rice and fish yields and a decrease in insect-pest incidence. Under Upland situation, short duration H.Y.V. in combination with fast-growing air breathing fish was studied thrice a year (summer, winter & autumn seasons). Combined rice and fish culture produced highest yields in all the seasons than in the control.
Resumo:
The countries and territories of the Pacific Islands face many challenges in building the three main pillars of food security: availability, access and appropriate use of nutritious food. These challenges arise from factors including rapid population growth and urbanization, shortages of arable land for farming and the availability of cheap, low-quality foods. As a result, many are now highly dependent on imported food, and the incidence of non-communicable diseases in the region is among the highest in the world. This report summarizes: 1) the projected effects of climate change on agriculture, fisheries and aquaculture in the Pacific region; 2) adaptations and supporting policies needed to reduce risks to food production; 3) gaps in knowledge that must be filled in order to implement the adaptations effectively; 4) recommendations to fill these knowledge gaps.
Resumo:
Effect of water depth on recovery rate, growth performance and fish yield of GIFT in the rice-fish production systems was studies in experimental plots of 123 m2 with a pond refuge of I meter deep which covered 10% of the total land area. Mortality rate of fish was very low ranging from 0.81-1.63%. However, at harvest, recovery rate ranged from 76.69-82.93% with the highest recovery at 11-15 em of water depth. Significantly the highest absolute growth (99.97) and specific growth rate (2.42%) were found at 21-25 cm water depth. The same treatment also produced significantly higher fish yield (909.76 kg/ha) although statistically similar to the fish yield (862.60 kg/ha) obtained at ll-15 em of water depth. Results also suggested that higher water depth can produce bigger fish but no significant effects of water depth was found on fish yield in the treatments 11-15 cm and 21-25 cm water depths of this experiment.