98 resultados para LIFE DISTRIBUTIONS
em Aquatic Commons
Resumo:
This report presents information on the life history, diet, abundance and distribution, and length-frequency distributions of five invertebrates in Florida Bay, Everglades National Park. Collections were made with an otter trawl in basins on a bi-monthly basis. Non-parametric statistics were used to test spatial and temporal differences in the abundance of invertebrates when numbers were appropriate (i. e., $25). Invertebrate species are presented in four sections. The sections on Life History, and Diet were derived from the literature. The section on Abundance and Distribution consists of data from otter-trawl collections. In addition, comparisons with other studies are included here following our results. The section on Length-frequency Distributions consists of length measurements from all collections, except 1984-1985 when no measurements were taken. Length-frequency distributions were used, when possible, to estimate life stage captured, spawning times, recruitment into Florida Bay for those species which spawn outside the Bay, and growth. Additional material from the literature was added when appropriate. (PDF contains 39 pages)
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
Life history aspects of larval and, mainly, juvenile spotted seatrout (Cynoscion nebulosus) were studied in Florida Bay, Everglades National Park, Florida. Collections were made in 1994−97, although the majority of juveniles were collected in 1995. The main objective was to obtain life history data to eventually develop a spatially explicit model and provide baseline data to understand how Everglades restoration plans (i.e. increased freshwater flows) could influence spotted seatrout vital rates. Growth of larvae and juveniles (<80 mm SL) was best described by the equation loge standard length = –1.31 + 1.2162 (loge age). Growth in length of juveniles (12–80 mm SL) was best described by the equation standard length = –7.50 + 0.8417 (age). Growth in wet weight of juveniles (15–69 mm SL) was best described by the equation loge wet-weight = –4.44 + 0.0748 (age). There were no significant differences in juvenile growth in length of spotted seatrout in 1995 between three geographical subdivisions of Florida Bay: central, western, and waters adjacent to the Gulf of Mexico. We found a significant difference in wet-weight for one of six cohorts categorized by month of hatchdate in 1995, and a significant difference in length for another cohort. Juveniles (i.e. survivors) used to calculate weekly hatchdate distributions during 1995 had estimated spawning times that were cyclical and protracted, and there was no correlation between spawning and moon phase. Temperature influenced otolith increment widths during certain growth periods in 1995. There was no evidence of a relationship between otolith growth rate and temperature for the first 21 increments. For increments 22–60, otolith growth rates decreased with increasing age and the extent of the decrease depended strongly in a quadratic fashion on the temperature to which the fish was exposed. For temperatures at the lower and higher range, increment growth rates were highest. We suggest that this quadratic relationship might be influenced by an environmental factor other than temperature. There was insufficient information to obtain reliable inferences on the relationship of increment growth rate to salinity.
Resumo:
The life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) was described from 1093 specimens collected from Virginia to northern Florida between April 1997 and March 1999. Longitudinally sectioned vertebral centra were used to age each specimen, and the periodicity of circuli deposition was verified through marginal increment analysis and focus-to-increment frequency distributions. Rhizoprionodon terraenovae reached a maximum size of 828 mm precaudal length (PCL) and a maximum age of 11+ years. Mean back-calculated lengths-at-age ranged from 445 mm PCL at age one to 785 mm PCL at age ten for females, and 448 mm PCL at age one to 747 mm PCL at age nine for males. Observed lengthat-age data (estimated to 0.1 year) yielded the following von Bertalanffy parameters estimates: L∞= 749 mm PCL (SE=4.60), K = 0.49 (SE=0.020), and t0= –0.94 (SE=0.046) for females; and L∞= 745 mm PCL (SE = 5.93), K = 0.50 (SE=0.024), and t0= –0.91 (SE = 0.052) for males. Sexual maturity was reached at age three and 611 mm PCL for females, and age three and 615 mm PCL for males. Rhizoprionodon terraenovae reproduced annually and had a gestation period of approximately 11 months. Litter size ranged from one to eight (mean=3.85) embyros, and increased with female PCL.
Resumo:
Table of Contents [pdf, 0.11 Mb] Executive Summary [pdf, 0.07 Mb] MODEL Task Team Workshop Report Final Report of the International Workshop to Develop a Prototype Lower Trophic Level Ecosystem Model for Comparison of Different Marine Ecosystems in the North Pacific [pdf, 11.64 Mb] Report of the 1999 MONITOR Task Team Workshop [pdf, 0.32 Mb] Report of the 1999 REX Task Team Workshop Herring and Euphausiid population dynamics Douglas E. Hay and Bruce McCarter Spatial, temporal and life-stage variation in herring diets in British Columbia [pdf, 0.10 Mb] Augustus J. Paul and J. M. Paul Over winter changes in herring from Prince William Sound, Alaska [pdf, 0.08 Mb] N. G. Chupisheva Qualitative texture characteristic of herring (Clupea pallasi pallasi) pre-larvae developed from the natural and artificial spawning-grounds in Severnaya Bay (Peter the Great Bay) [pdf, 0.07 Mb] Gordon A. McFarlane, Richard J. Beamish and Jake SchweigertPacific herring: Common factors have opposite impacts in adjacent ecosystems [pdf, 0.15 Mb] Tokimasa Kobayashi, Keizou Yabuki, Masayoshi Sasaki and Jun-Ichi Kodama Long-term fluctuation of the catch of Pacific herring in Northern Japan [pdf, 0.39 Mb] Jacqueline M. O’Connell Holocene fish remains from Saanich Inlet, British Columbia, Canada [pdf, 0.40 Mb] Elsa R. Ivshina and Irina Y. Bragina On relationship between crustacean zooplankton (Euphausiidae and Copepods) and Sakhalin-Hokkaido herring (Tatar Strait, Sea of Japan) [pdf, 0.14 Mb] Stein Kaartvbeedt Fish predation on krill and krill antipredator behaviour [pdf, 0.08 Mb] Nikolai I. Naumenko Euphausiids and western Bering Sea herring feeding [pdf, 0.07 Mb] David M. Checkley, Jr. Interactions Between Fish and Euphausiids and Potential Relations to Climate and Recruitment [pdf, 0.08 Mb] Vladimir I. Radchenko and Elena P. Dulepova Shall we expect the Korf-Karaginsky herring migrations into the offshore western Bering Sea? [pdf, 0.75 Mb] Young Shil Kang Euphausiids in the Korean waters and its relationship with major fish resources [pdf, 0.29 Mb] William T. Peterson, Leah Feinberg and Julie Keister Ecological Zonation of euphausiids off central Oregon [pdf, 0.11 Mb] Scott M. Rumsey Environmentally forced variability in larval development and stage-structure: Implications for the recruitment of Euphausia pacifica (Hansen) in the Southern California Bight [pdf, 3.26 Mb] Scott M. Rumsey Inverse modelling of developmental parameters in Euphausia pacifica: The relative importance of spawning history and environmental forcing to larval stage-frequency distributions [pdf, 98.79 Mb] Michio J. Kishi, Hitoshi Motono & Kohji Asahi An ecosystem model with zooplankton vertical migration focused on Oyashio region [pdf, 33.32 Mb] PICES-GLOBEC Implementation Panel on Climate Change and Carrying Capacity Program Executive Committee and Task Team List [pdf, 0.05 Mb] (Document pdf contains 142 pages)
Resumo:
Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html] (Document pdf contains 48 pages)
Resumo:
Special Publication 2 On-line version On-line version includes links to the following files (these files are not included into publication): Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html]
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
The family Priacanthidae contains four genera and four species that occur in the western central North Atlantic (Starnes, 1988). Pristigenys alta is distributed in the Caribbean, Gulf of Mexico and along the east coast of North America. Although juveniles have been reported from as far north as southern New England waters, adults are not reported north of Cape Hatteras, NC. Priacanthus arenatus is distributed in tropical and tropically influenced areas of the western central North Atlantic in insular and continental shelf waters. Adult P. arenatus are distributed north to North Carolina and Bermuda, juveniles have been collected as far north as Nova Scotia. Cookeolus japonicus and Heteropriacanthus cruentatus are circumglobally distributed species and are both common in insular habitats. In the western central North Atlantic, C. japonicus ranges from New Jersey to Argentina; H. cruentatus from New Jersey and northern Gulf of Mexico to southern Brazil (Starnes, 1988). (PDF contains 6 pages)
Resumo:
The family Gerreidae contains four genera and 13 species that occur in the western central North Atlantic. Adult gerreids are small to medium size fishes that are abundant in coastal waters, bays, and estuaries in tropical and warm temperate regions and sometimes occur in freshwaters. They are generally associate~ with grassy or open bottoms, but not with reefs. Gerreids are silvery fishes, with deeply forked tails, and extremely protrusible mouth that points downward when protracted. They apparently feed on bottom-dwelling organisms and at least one species (Eucinostomus gula) shows a distinct transition, during the juvenile period, from a planktivore (exclusively copepods) to a carnivore that includes a diet of almost solely polychaetes (Carr & Adams, 1973; Robins and Ray, 1987; Murdy et al., 1997). (PDF contains 10 pages)
Resumo:
Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages)
Resumo:
The science of fisheries acoustics and its applicability to resource management have evolved over the past several decades. This document provides a basic description of fisheries acoustics and recommendations on using this technology for research and monitoring of fish distributions and habitats within sanctuaries. It also describes recent efforts aimed at applying fisheries acoustics to Gray’s Reef National Marine Sanctuary (GRNMS) (Figure 1). Historically, methods to assess the underwater environment have included net trawls, diver censuses, hook and line, video, sonar and other techniques deployed in a variety of ways. Fisheries acoustics, using active sonar, relies on the physics of sound traveling through water to quantify the distribution of biota in the water column. By sending a signal of a given frequency through the water column and recording the time of travel and the strength of the reflected signal, it is possible to determine the size and location of fish and estimate biomass from the acoustic backscatter. As a fisheries assessment tool, active hydroacoustics technology is an efficient, non-intrusive method of mapping the water column at a very fine spatial and temporal resolution. It provides a practical alternative to bottom and mid-water trawls, which are not allowed at GRNMS. Passive acoustics, which uses underwater hydrophones to record man-made and natural sounds such as fish spawning calls and sounds produced by marine mammals for communication and echolocation, can provide a useful, complementary survey tool. This report primarily deals with active acoustics, although the integration of active and passive acoustics is addressed as well. (PDF contains 32 pages)
Resumo:
ENGLISH: The egg of the anchoveta, Cetengraulis mysticetus (Günther), was identified in the Gulf of Panama by its size, difference in diurnal period of spawning, seasonal occurrence (October to January) and relative abundance. It is pelagic, translucent and oval with mean dimensions of 1.166 mm. and 0.558 mm. for the long and short axes respectively. The egg membrane is unsculptured, the yolk mass is markedly segmented, and no oil globule or pigmentation is present. It was not found in the plankton from mid-January 1957 until the latter part of the following September; during this period the gonads of the anchoveta were immature. Only one other anchovy egg, spawned during the same diurnal period, is sufficiently similar in dimensions to be confused with that of the anchoveta; however, it is slightly smaller. SPANISH: El huevo de la anchoveta, Cetengraulis mysticetus (Günther), fué identificado en el Golfo de Panamá por su tamaño, diferencias en el período diario de desove, su abundancia en la temporada (de octubre a enero) y por su abundancia relativa. El huevo es pelágico, translúcido, oval y con dimensiones promedio de 1.166 mm. y 0.558 mm. para los ejes largo y corto, respectivamente. La membrana es lisa, el vitelo está francamente segmentado y no posee ningún glóbulo graso o pigmentación. El huevo de la anchoveta no se encontró en el plancton en el período comprendido entre mediados de enero y fines de septiembre de 1957; durante este lapso las gónadas estuvieron inactivas.
Resumo:
Previous work has determined the age distribution from a sample of spotted dolphins (Stenella attenuata) killed in the eastern Pacific tuna purse-seine fishery. In this paper we examine the usefulness of this age distribution for estimating natural mortality rates. The observed age
distribution has a deficiency of individuals from 5-15 years and cannot represent a stable age distribution. Sampling bias and errors in age interpretation are examined as possible causes of the "dip" in the observed age structure. Natural mortality rates are estimated for the 15+ age classes based on the assumption that these are sampled representatively. The resulting annual survival rate
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)