10 resultados para Knowledge organization systems
em Aquatic Commons
Resumo:
Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications Aquaculture Knowledge Gaps Glossary Ocean and Climate Changes [pdf, 4.1Mb] Highlights Introduction Atmospheric Indices Change in 1998/99 Comparison of Atmospheric Indices Authorship Yellow Sea / East China Sea [pdf, 2.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Benthos Fish and invertebrates Marine birds and mammals Issues Critical factors causing change Authorship Japan/East Sea [pdf, 3.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical factors causing change Issues Authorship Okhotsk Sea [pdf, 1.7 Mb] Background Status and Trends Climate Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Critical factors causing change Authorship Oyashio / Kuroshio [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Western Subarctic Gyre [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Bering Sea [pdf, 2.2 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of Alaska [pdf, 2.6 Mb] Highlights Background Status and trends Hydrography Chemistry Plankton Fish and Invertebrates Marine birds and mammals Critical factors causing change Issues Authorship California Current [pdf, 2.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of California [pdf, 1.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fisheries Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Transition Zone [pdf, 2.5 Mb] Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Tuna [pdf, 1.5 Mb] Highlights Background Pacific bluefin tuna Albacore tuna Status and trends Ecosystem model and climate forcing Authorship Pacific halibut [pdf, 1.1 Mb] Background The Fishery Climate Influences Authorship Pacific salmon [Updated, pdf, 0.4 Mb] Background Status and Trends Washington, Oregon, and California British Columbia Southeast Alaska Central Alaska Western Alaska Russia Japan Authorship References [pdf, 0.5 Mb]
Resumo:
The Guidelines provide a special focus on information and knowledge sharing and its current and potential role in supporting implementation of the Code of Conduct for Responsible Fisheries. They expand on relevant principles and standards set forth in the Code and make practical suggestions about ways to ensure that this role can be enhanced. The issues involved in the flow of information between different stakeholder groups include topics as diverse as information policy frameworks and information and communication technology infrastructure, hence coverage is introductory. Some of the constraints involved in the cycle from the creation, production, dissemination and availability of information and knowledge to its effective use and sharing by the present generation as well as its preservation for the future are presented. The special circumstances and requirements of stakeholders in developing countries are recognized in accordance with Article 5 of the Code. A separate chapter on small-scale fisheries and aquaculture looks in more detail at the special situation and information needs of the sub-sector. The Guidelines aim to foster a better understanding of the issues involved to ensure that stakeholders obtain the essential information that they need and that they make available their own information and knowledge for the public good. (PDF contains 115 pages)
Resumo:
The U.S. Fish Commission was initiated in 1871 with Spencer Fullerton Baird as the first U.S. Fish Commissioner as an independent entity. In 1903 it became a part of the new U.S. Department of Commerce and Labor and was renamed the Bureau of Fisheries, a name it retained when the Departments of Commerce and Labor were separated in 1912. The Bureau remained in the Commerce Department until 1941 when it was merged with the Biological Survey and placed in the Department of Interior as the U.S. Fish and Wildlife Service. It was a scientific agency with well conceived programs of action, and it provided knowledge, advice, and example to state governments and individuals with fisheries interests and needs. Its efforts were supported by timely international agreements which constituted the precedent for Federal interest in fishery matters. The Fisheries Service earned stature as an advisor through heavy emphasis on basic biological research. The lack of such knowledge was marked and universal in the 1870’s, but toward the end of that decade, strong steps had been taken to address those needs under Baird’s leadership. USFC research activities were conducted cooperatively with other prominent scientists in the United States and abroad. Biological stations were established, and the world’s first and most productive deepsea research vessel, the Albatross, was constructed, and its 40-year career gave a strong stimulus to the science of oceanography. Together, the agency’s scientists and facilities made important additions to the sum of human knowledge, derived principles of conservation which were the vital bases for effective regulatory legislation, conducted extensive fish cultural work, collected and disseminated fisheries statistics, and began important research in methods of fish harvesting, preservation, transportation, and marketing.
Resumo:
Aquatic agricultural systems (AAS) are systems in which the annual production dynamics of freshwater and/or coastal ecosystems contribute significantly to total household income. Improving the livelihood security and wellbeing of the estimated 250 million poor people dependent on AAS in Bangladesh, Cambodia, the Philippines, the Solomon Islands and Zambia is the goal of the Worldfish Center-led Consortium Research Program (CRP), “Harnessing the development potential of aquatic agricultural systems for development.” One component expected to contribute to sustainably achieving this goal is enhancing the gender and wider social equity of the social, economic and political systems within which the AAS function. The CRP’s focus on social equity, and particularly gender equity, responds to the limited progress to date in enhancing the inclusiveness of development outcomes through interventions that offer improved availability of resources and technologies without addressing the wider social constraints that marginalized populations face in making use of them. The CRP aims to both offer improved availability and address the wider social constraints in order to determine whether a multi-level approach that engages with individuals, households and communities, as well as the wider social, economic and political contexts in which they function, is more successful in extending development’s benefits to women and other excluded groups. Designing the research in development initiatives to test this hypothesis requires a solid understanding of each CRP country’s social, cultural and economic contexts and of the variations across them. This paper provides an initial input into developing this knowledge, based on a review of literature on agriculture, aquaculture and gender relations within the five focal countries. Before delving into the findings of the literature review, the paper first justifies the expectation that successfully achieving lasting wellbeing improvements for poor women and men dependent on AAS rests in part on advances in gender equity, and in light of this justification, presents the AAS CRP’s conceptual framew
Resumo:
The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.
Resumo:
Increases in fish demand in the coming decades are projected to be largely met by growth of aquaculture. However, increased aquaculture production is linked to higher demand for natural resources and energy as well as emissions to the environment. This paper explores the use of Life Cycle Assessment to improve knowledge of potential environmental impacts of future aquaculture growth. Different scenarios of future aquaculture development are taken into account in calculating the life cycle environmental impacts. The environmental impact assessments were built on Food and Agriculture Organization statistics in terms of production volume of different species, whereas the inputs and outputs associated with aquaculture production systems were sourced from the literature. The matrix of input-output databases was established through the Blue Frontiers study.
Resumo:
Several important advances have been made in our knowledge both regarding the factors which determine fertility in tropical lakes and the fish that live in them. As a result of our investigations a new theory has been put forward regarding the part played by animals in the bionomics of a lake; this theory, stated somewhat baldly, is that within certain limits the greater the number of animals in a shallow tropical lake, the greater becomes its potential fertility, and therefore the greater the number of animals it can support. The theory arises as a logical conclusion, once we accept the fact that the rate of production in such a lake is determined by the rate at which organic matter is decomposed. Bottom deposits which consist mainly of vegetable matter decompose slowly, whereas deposits which contain a high proportion of matter of animal origin decompose more rapidly. Thus the more animals in a lake, particularly animals which feed on plant material, the faster the biological cycle can proceed and the greater the density of animals it can support. This new concept will have a very profound influence on our ideas concerning the consequences of overfishing tropical waters. It also shows that efforts must be made to encourage and protect all herbivorous and detritus feeding animals, whether they be copepods, fish, or hippopotami, and whether they are of immediate economic importance or not.
Resumo:
The countries and territories of the Pacific Islands face many challenges in building the three main pillars of food security: availability, access and appropriate use of nutritious food. These challenges arise from factors including rapid population growth and urbanization, shortages of arable land for farming and the availability of cheap, low-quality foods. As a result, many are now highly dependent on imported food, and the incidence of non-communicable diseases in the region is among the highest in the world. This report summarizes: 1) the projected effects of climate change on agriculture, fisheries and aquaculture in the Pacific region; 2) adaptations and supporting policies needed to reduce risks to food production; 3) gaps in knowledge that must be filled in order to implement the adaptations effectively; 4) recommendations to fill these knowledge gaps.
Resumo:
An investigation was carried out in Phulpur upazila, Mymensingh to examine the current production practices of freshwater giant prawn, Macrobrachium rosenbergii and its marketing systems with sustainable livelihood approach. The livelihoods of a considerable number of rural poor are associated with prawn production in Phulpur upazila. Based on a sample of 50 farmers, about 94% farmers were found to culture prawn with fish in their ponds. Only 4% and 2% farmers were found to culture prawn-fish-dike crops and only prawn respectively. Prawn marketing is almost exclusively a preserve of the private sector where the livelihoods of a large number of people are associated with its distribution and marketing systems. The market chain from producers to consumers passes through a number of intermediaries. About 40% of the produced prawns are exported and the rest 60% are sold to local markets. The price of prawn depends on quality, size and weight. The average farm-gate price of prawn varied from Tk. 110 to 160/kg, whereas it's [sic] market price varied from Tk. 150 to 350/kg. Most of the farmers and traders have improved their socio-economic conditions through prawn farming and marketing activities. However, concerns arise about the long-term sustainability of prawn farming and marketing systems due to lack of technical knowledge of prawn farming, poor road and transport facilities, higher transport cost, poor supply of ice, lack of cash and credit facilities. It is therefore essential to provide institutional and organizational support and credit facilities for sustainable prawn production and marketing systems.
Resumo:
The Victoria and Kyoga lake basins form the major aquatic system of this study (Fig. I). The two lake basins share a common evolutionary history and have similar native fish faunas (Graham 1929, Worthington 1929). The two main lakes have also had similar impacts by introduction of Nile perch Lates niloticus and therefore these two lakes can be considered to be similar for ichiogeographical purposes. These lake basins have many satellite lakes isolated from one another and from the main lakes Victoria and Kyoga by swamps and other barriers. Some of these satellite lakes still possess stocks of endemic fish species which are almost extinct from the main water bodies. It was therefore considered that understanding of these lakes would contribute to the knowledge base required to solve some of the problems experienced in Lake Victoria and Kyoga especially the loss in trophic diversity arising. The study was carried out in these two main water bodies (Kyoga and Victoria) and on other satellite lakes e.g Wamala, Kachera, Mburo, Kayanja and Kayugi in the Victoria lake basin and lakes Nawampasa, Nyaguo, Agu, Gigate, Lemwa and Kawi in the Kyoga lake basin (Figs. 2, 3, 4, 5 & 6).