2 resultados para Knots and splices.
em Aquatic Commons
Resumo:
We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.
Resumo:
Boat wakes in the Atlantic Intracoastal Waterway (AIWW) of North Carolina occur in environments not normally subjected to (wind) wave events, making sections of AIWW potentially vulnerable to extreme wave events generated by boat wakes. The Snow’s Cut area that links the Cape Fear River to the AIWW is an area identified by the Wilmington District of the U.S. Army Corps of Engineers as having significant erosion issues; it was hypothesized that this erosion could be being exacerbated by boat wakes. We compared the boat wakes for six combinations of boat length and speed with the top 5% wind events. We also computed the benthic shear stress associated with boat wakes and whether sediment would move (erode) under those conditions. Finally, we compared the transit time across Snow’s Cut for each speed. We focused on two size classes of V-hulled boats (7 and 16m) representative of AIWW traffic and on three boat speeds (3, 10 and 20 knots). We found that at 10 knots when the boat was plowing and not yet on plane, boat wake height and potential erosion was greatest. Wakes and forecast erosion were slightly mitigated at higher, planing speeds. Vessel speeds greater than 7 knots were forecast to generate wakes and sediment movement zones greatly exceeding that arising from natural wind events. We posit that vessels larger than 7m in length transiting Snow’s Cut (and likely many other fetch-restricted areas of the AIWW) frequently generate wakes of heights that result in sediment movement over large extents of the AIWW nearshore area, substantially in exceedance of natural wind wave events. If the speed, particularly of large V-hulled vessels (here represented by the 16m length class), were reduced to pre-plowing levels (~ 7 knots down from 20), transit times for Snow’s Cut would be increased approximately 10 minutes but based on our simulations would likely substantially reduce the creation of erosion-generating boat wakes. It is likely that boat wakes significantly exceed wind wave background for much of the AIWW and similar analyses may be useful in identifying management options.