8 resultados para Knight, Marcus
em Aquatic Commons
Resumo:
The largely sedentary behavior of many fishes on coral reefs is well established. Information on the movement behavior of individual fish, over fine temporal and spatial scales, however, continues to be limited. It is precisely this type of information that is critical for evaluating the success of marine reserves designed for the conservation and/or management of vagile fishes. In this pilot study we surgically-tagged eight hogfish (Lachnolaimus maximus Walbaum 1792) with coded-acoustic transmitters inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary. Our primary objective was to characterize the movement of L. maximus across Conch Reef in the vicinity of the reserve. All fish were captured, surgically-tagged and released in situ during a saturation mission to the Aquarius Undersea Laboratory, which is located in the center of the reserve. Movement of tagged L. maximus was recorded for up to 95 days by three acoustic receivers deployed on the seafloor. Results showed clear diel patterns in L. maximus activity and regular movement among the receivers was recorded for seven of the eight tagged fish. Fidelity of tagged fish to the area of release was high when calculated at the scale of days, while within-day fidelity was comparatively low when calculated at the scale of hours. While the number of fish departures from the array also varied, the majority of departures for seven of the eight fish did not exceed 1-hr (with the exception of one 47-day departure), suggesting that when departures occurred, the fish did not travel far. Future efforts will significantly expand the number of receivers at Conch Reef such that fish movement behavior relative to the reserve boundaries can be quantified with increased temporal and spatial resolution. (PDF contains 22 pages.)
Resumo:
Covers the history of the study of boring sponges, taxonomy and distributions. Also includes identification of species, descriptions, key, references and plates. (PDF contains 30 pages)
Resumo:
Apart from activities of some foreign-based vessels, commercial exploitation of pelagic fishery resources in Nigeria has been limited to inland and inshore waters. Estimated potential for the inshore pelagic fishery is 70,000-90,000 tonnes while the small pelagic resources in the near offshore as well as tuna and tuna-like fishes further offshore have potentials of about 10,000 metric tonnes each. Despite the abundance of tuna within and adjoining the Nigerian EEZ, and its importance in the international market, only foreign-flagged vessels take advantage. In addition, the inshore pelagic fisheries in Nigeria have for long remained underexploited. The most common processing method has remained the age-old traditional smoke-drying, which is inadequate resulting in colossal waste through denaturation and incessant infestations by insects and moulds among other causes. The use of modern smoking techniques coupled with effective distribution systems can undoubtedly reduce waste. However, these are often not within the reach of most artisanal processors. It is proposed that the organised private sector should invest on simple but proven processing equipment such as smoking kilns. The inshore pelagic fish species and other small fishes can sustain cottage canning industries sited in fishing villages/settlements while larger canning factories should be based on offshore resources. Modalities for successful investments are highlighted, while a major consideration is given to joint ventures
Resumo:
One of the supposed effects of the observed ozone depletion is the increase of solar UV-B irradiation at the seasurface. This will cause an impact on certain compartments of marine ecosystems. Especially, sensitive developmental stages of pelagic fish embryos might be affected. Embryos of dab (Limanda limanda) and plaice (Pleuronectes plalessa) were experimentally exposed 10 different amounts of UVB irradiation in a sunshine simulator. This programmable device allows the dosage of realistic solar irradiation in quality and guantity. Experiments were carried out in March 1995 and February 1996. Either artificially inserninated and reared emhryos of dab and plaice or embryos caught in the German Bight were exposed to simulated solar irradiation. The 1995 experiments served to identify the effective irradiation dosages. For the 1996 experiments irradiation applied was much lower, being dose to realistic valucs expected over the North Sea as a consequence of ozone depletion. The following end points were studied: 1. Mortality, 2. sublethal morphological effects (malformations), 3. DNA damage, 4. changes in buoyancy of embryos measured as changes in osmolarity of the perivitelline fluid. Conditions for the simulation of daylight were a c1oudless sky with a solar zenith distance of 34 % (air mass 1.2). The adopted ozone depletion was 40 % corresponding to 180 DU (Dobson Units) instead of 300 DU. In the 1995 experiments time and dosage dependent influenccs on mortality and buoyancy of embryos of dab and plaice were found. Even in those embryos which were protected from the UV-B spectral range a loss of buoyancy was registered after 12 hours in the simulator. No diffcrences in DNA integrity as determined by DNA unwinding of exposed and control embryos were found. Also with lower amounts of irradiation in the 1996 experiments dosage dependent acute mortality, malformations, and impact on the buoyancy of the emhryos was registered. Sublethal effects occurred as well in embryos protected against UV-B in the exposure chambers, but were not found in the dark controls. The impact of low dosages of UV-B on the buoyancy of pelagic fish embryos might indicate an important ecological threat and deserves further studies.
Resumo:
Surveys with a remotely operated vehicle (ROV) at four mudhabitat sites with different histories of ocean shrimp (Pandalus jordani) trawling showed measurable effects of trawling on macroinvertebrate abundance and diversity. Densities of the sea whip (Halipteris spp., P<0.01), the flat mud star (Luidia foliolata, P< 0.001), unidentified Asteroidea (P<0.05), and squat lobsters (unidentified Galathoidea, P<0.001) were lower at heavily trawled (HT) sites, as was invertebrate diversity based on the Shannon-Wiener index. Sea cucumbers (unidentified Holothuroidea) and unidentified corals (Hydrocoralia) were observed at lightly trawled (LT) sites but not at HT sites. Hagfish (Eptatretus spp.) burrows were the dominant structural feature of the sediment surface at all sites and were more abundant at the HT sites (P<0.05), a result potentially related to effects from fishery discards. Substantial heterogeneity was found between the northern and southern site pairs, indicating high site-to-site variability in macroinvertebrate densities in these deep (146–156 m) mud habitats. Two of the study sites were closed to trawling in June 2006. The data from this study can be used in combination with future surveys to measure recovery rates of deep, mud, seaf loor habitats from the effects of trawling, thus providing a critical piece of information for ecosystem-based management.
Resumo:
Identification of the spatial scale at which marine communities are organized is critical to proper management, yet this is particularly difficult to determine for highly migratory species like sharks. We used shark catch data collected during 2006–09 from fishery-independent bottom-longline surveys, as well as biotic and abiotic explanatory data to identify the factors that affect the distribution of coastal sharks at 2 spatial scales in the northern Gulf of Mexico. Centered principal component analyses (PCAs) were used to visualize the patterns that characterize shark distributions at small (Alabama and Mississippi coast) and large (northern Gulf of Mexico) spatial scales. Environmental data on temperature, salinity, dissolved oxygen (DO), depth, fish and crustacean biomass, and chlorophyll-a (chl-a) concentration were analyzed with normed PCAs at both spatial scales. The relationships between values of shark catch per unit of effort (CPUE) and environmental factors were then analyzed at each scale with co-inertia analysis (COIA). Results from COIA indicated that the degree of agreement between the structure of the environmental and shark data sets was relatively higher at the small spatial scale than at the large one. CPUE of Blacktip Shark (Carcharhinus limbatus) was related positively with crustacean biomass at both spatial scales. Similarly, CPUE of Atlantic Sharpnose Shark (Rhizoprionodon terraenovae) was related positively with chl-a concentration and negatively with DO at both spatial scales. Conversely, distribution of Blacknose Shark (C. acronotus) displayed a contrasting relationship with depth at the 2 scales considered. Our results indicate that the factors influencing the distribution of sharks in the northern Gulf of Mexico are species specific but generally transcend the spatial boundaries used in our analyses.