26 resultados para KNOWLEDGE OF RESULTS
em Aquatic Commons
Resumo:
Taxonomic observations on the larval forms of Cyclops leuckarti are being discussed and compared with Cyclops oithonoides var. hyalina. Observations include Nauplius and Metanauplius stages. The author concludes that specific differences are recognisable even in the nauplius stages.
Resumo:
Glandular cells, other than the mucous cells, have been described in the skin of various groups of fish (Teleosts, Ganoids, Selachii) and they have been called 'albuminose' by various authors. The authors propose to study the albuminose cells in the skin of Torpedo ocellata Raf. from a histochemical point of view. The albuminose cells have a complex morphological structure and a correspondingly complicated histochemical make-up. One must treat them as an example of cell with secretions of a particular type, which must and will be better incorporated when more is known of characteristics existent in other species.
Resumo:
This partial translation of the original paper provides morphological observations on the fungus Spirospora paradoxa. Illustrations are included here.
Resumo:
Morphological observations on the two types of Pseudospora are given. The two Pseudospora whic are described are Pseudospora eudorini and Pseudospora volvocis. The systematic classification of the genus Pseudospora is discussed.
Resumo:
This report summarises the routine monitoring surveys carried out in the River Lune and River Duddon estuaries during 1992. Data includes salinity, chloride, pH, nutrients and heavy metals.
Resumo:
The population of belugas, Delphinapterus leucas, in Cook Inlet, Alaska, is geographically isolated and appears to be declining. Conservation efforts require appropriate information about population levels and trends, feeding and behavior, reproduction, and natural and anthropogenic impacts. This study documents traditional ecological knowledge of the Alaska Native hunters of belugas in Cook Inlet to add information from this critical source. Traditional knowledge about belugas has been documented elsewhere by the author, and the same methods were used in Cook Inlet to systematically gather information concerning knowledge of the natural history of this beluga population and its habitat. The hunters’knowledge is largely consistent with what is known from previous research, and it extends the published descriptions of the ecology of beluga whales in Cook Inlet. Making this information available and involving the hunters to a greater extent in research and management are important contributions to the conservation of Cook Inlet beluga
Resumo:
This is the Kent estuary 1992 surveys: Summary of results produced by the National Rivers Authority in 1993. The report summarises routine and baseline water quality surveys carried out on the Kent estuary during 1992. Baseline surveys are designed to respond to regional, national, and European requirements. During 1992 baseline surveys were carried out in June and December. Unfortunately, in June, samples could only be taken from stations 3, 7 and 8. For ease of interpretation the results have been presented in graph form, including the maximum and minimum parameter concentration and the appropriate Environmental Quality Standards (EQS). The parameters measured in this survey were physical parameters (temperature, BOD, dissolved oxygen, Ph, salinity, conductivity); nutrients (ammonia, phosphate, and nitrate); metals (Mercury, Nickel, Arsenic, Cadmium, Chromium, Cooper, Boron, and Zinc) and organic compounds.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
Mahseers (Tor khudree), at one time considered to be of single species, are now represented by 6 valid species distributed all over India. Studies on their food habits, ecology of spawning grounds, eggs, larval development and especially methods of artificial propagation have advanced in recent years. Transport of eggs of Tor khudree by air in moist cotton has been possible for easy distribution. Breeding of T. khudree not only by hypophysation, but even without it in small ponds by manipulation of flow of water, exercise and feed has also been possible. Fry and fingerlings of T. khudree are being distributed to many of the states in the country to help conserve the species.
Resumo:
This is the first in a series of case studies undertaken by the International Collective in Support of Fishworkers (ICSF) to document the traditional knowledge of fishing communities dependent on marine and coastal resources in protected and conserved areas in different parts of the world. The study, done with the support of the Bay of Bengal Large Marine Ecosystem (BOBLME) project, documents the traditional knowledge of fishing communities in the Gulf of Mannar in the state of Tamil Nadu. It focuses on two fishing villages, Chinnapalam and Bharathi Nagar, whose communities have traditionally depended on Krusadai and Appa Islands for their livelihood. Traditional knowledge relating to oceanographic, meteorological, biological, ecological and navigational aspects of fisheries was documented. The study will be useful for researchers, students, scientists, policymakers, fishworker organizations, NGOs and anyone interested in the traditional knowledge of local fishing communities related to marine biodiversity and the customary use of fisheries resources and fishing practices.
Resumo:
Our knowledge regarding ethno-medico zoology is scanty and scattered. The present work is an endeavour to collect information on indigenous traditional knowledge (ITK) of disease cure through fish consumption, prepare a consolidated report on this aspect and to document our ITK so that in the long run after due verification (by Medical experts), such ITK can be patented. We also suggest for the recognition of the age old tribal medicine and establishment of a national research institute for tribal medicines at suitable place for the welfare of all the human beings.
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)