148 resultados para Juvenile probation
em Aquatic Commons
Resumo:
We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies.
Resumo:
Organismal survival in marine habitats is often positively correlated with habitat structural complexity at local (within-patch) spatial scales. Far less is known, however, about how marine habitat structure at the landscape scale influences predation and other ecological processes, and in particular, how these processes are dictated by the interactive effect of habitat structure at local and landscape scales. The relationship between survival and habitat structure can be modeled with the habitat-survival function (HSF), which often takes on linear, hyperbolic, or sigmoid forms. We used tethering experiments to determine how seagrass landscape structure influenced the HSF for juvenile blue crabs Callinectes sapidus Rathbun in Back Sound, North Carolina, USA. Crabs were tethered in artificial seagrass plots of 7 different shoot densities embedded within small (1 – 3 m2) or large (>100 m2) seagrass patches (October 1999), and within 10 × 10 m landscapes containing patchy (<50% cover) or continuous (>90% cover) seagrass (July 2000). Overall, crab survival was higher in small than in large patches, and was higher in patchy than in continuous seagrass. The HSF was hyperbolic in large patches and in continuous seagrass, indicating that at low levels of habitat structure, relatively small increases in structure resulted in substantial increases in juvenile blue crab survival. However, the HSF was linear in small seagrass patches in 1999 and was parabolic in patchy seagrass in 2000. A sigmoid HSF, in which a threshold level of seagrass structure is required for crab survival, was never observed. Patchy seagrass landscapes are valuable refuges for juvenile blue crabs, and the effects of seagrass structural complexity on crab survival can only be fully understood when habitat structure at larger scales is considered.
Resumo:
Patterns were investigated in juvenile fish use of unconsolidated sediments on the southeast United States continental shelf off Georgia. Juvenile fish and environmental data were sampled at ten stations along a 110-km cross-shelf transect, including four stations surrounding Gray’s Reef National Marine Sanctuary (Gray’s Reef NMFS). Cross-shelf stations were sampled approximately quarterly from spring 2000 to winter 2002. Additional stations were sampled on three transects inshore of Gray’s Reef NMS and four transects offshore of the Sanctuary during three cruises to investigate along-shelf patterns in the juvenile fish assemblages. Samples were collected in beam trawls, and 121 juvenile taxa, of which 33 were reef-associated species, were identified. Correspondence analysis on untransformed juvenile fish abundance indicated a cross-shelf gradient in assemblages, and the station groupings and assemblages varied seasonally. During the spring, fall, and winter, three cross-shelf regions were identified: inner-shelf, mid-shelf, and outer-shelf regions. In the summer, the shelf consisted of a single juvenile fish assemblage. Water depth was the primary environmental variable correlated with cross-shelf assemblages. However, salinity, density, and water column stratification also correlated with the distribution of assemblages during the spring, fall, and winter, and along with temperature likely influenced the distribution of juvenile fish. No along-shelf spatial patterns were found in the juvenile fish assemblages, but the along-shelf dimension sampled was small (~60 km). Our results revealed that a number of commercially and recreationally important species used unconsolidated sediments on the shelf off Georgia as juvenile habitat. We conclude that management efforts would be improved through a greater recognition of the importance of these habitats to fish production and the interconnectedness of multiple habitats in the southeast U.S. continental shelf ecosystem.
Resumo:
The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)
Resumo:
Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)
Resumo:
Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.)
Resumo:
This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
Developmental stages of 22 species representing 16 genera of agonid fishes occurring in the northeastern Pacific Ocean from San Francisco Bay to the Arctic Ocean are presented. Three of these species also occur in the North Atlantic Ocean. Larval stages of nine species are described for the first time. Additional information or illustrations intended to augment original descriptions are provided for eight species. Information on five other species is provided from the literature for comparative purposes. The primary objective of this guide is to present taxonomic characters to help identify the early life history stages of agonid fishes in field collections. Meristic, morphometric, osteological, and pigmentation characters are used to identify agonid larvae. Meristic features include numbers of median-fin elements, pectoral-fin rays, dermal plates, and vertebrae. Eye diameter, body depth at the pectoral-fin origin, snout to first dorsal-fin length, and pectoral-fin length are the most useful morphological characters. Presence, absence, numbers, and/or patterns of dermal plates in lateral rows or on the ventral surface of the gut are also useful. Other important characters are the presence, absence, numbers, and ornamentation of larval head spines. Lastly, distinct pigmentation patterns are often diagnostic. The potential utility of larval characters in phylogenetic analysis of the family Agonidae is discussed. (PDF file contains 92 pages.)
Resumo:
The Alaska Fisheries Science Center (AFSC), National Marine Fisheries Service (NMFS), hosted an international workshop, 'The Importance of Prerecruit Walleye Pollock to the Bering Sea and North Pacific Ecosystems," from 28 to 30 October 1993. This workshop was held in conjunction with the annual International North Pacific Marine Science Organization (PICES) meeting held in Seattle. Nearly 100 representatives from government agencies, universities, and the fishing industry in Canada, Japan, the People's Republic of China, Russia, and the United States took part in the workshop to review and discuss current knowledge on juvenile pollock from the postlarval period to the time they recruit to the fisheries. In addition to its importance to humans as a major commercial species, pollock also serves as a major forage species for many marine fishes, birds, and mammals in the North Pacific region. (PDF file contains 236 pages.)
Resumo:
This report is a summary of the results of 883 purse seine sets made for juvenile salmonids during 15 cruises off the coasts of Oregon and Washington during the springs and summers of 1981-1985. Juvenile coho salmon (Oncorhynchus kisutch) occurred most frequently, followed by chinook salmon (0. tshawytscha). The juveniles of these two species co-occurred more frequently than expected. Juvenile chum, pink and sockeye salmon (0. keta, O. gorbuscha, and O. nerka), steelhead (0. mykiss) and cutthroat trout (0. clarki clarki) were caught much less frequently and in lower numbers than coho or chinook salmon. We found no evidence of large schools ofjuvenile salmonids. A northerly movement of juvenile coho salmon wa~ suggested by decreased catches off Oregon and increased catches off Washington between early and late summer. Highest catch per set of juvenile coho salmon was usually found inshore of 37.2 km. Juvenile chinook salmon were usually found within 27.9 km of the coast. Juvenile salmonids were found over a broad range of surface salinities and temperatures. High catches of juvenile coho salmon occurred in both the low salinity waters of the Columbia River plume and in adjacent higher salinity waters. Preferences for specific salinities or temperatures were not obvious for any species, although catch rates of juvenile coho salmon were highest in years when chlorophyll content was also high. Based on expansions of fish with coded wire tags, we estimated that hatchery coho salmon smolts comprised 74%, on average, of the juvenile coho salmon catches. The remaining 26% were presumably wild fish or hatchery fish released as fingerlings. Hatchery coho salmon were caught roughly in proportion to the numbers released. However, hatchery fish from the Columbia River and private coastal facilities were caught at slightly higher rates while those from coastal Washington and public coastal Oregon hatcheries were caught at slightly lower rates than expected from the numbers released. No juvenile coho salmon with coded wire tags were caught that had originated from either California or Puget Sound hatcheries. (PDF file contains 88 pages.)
Resumo:
The estuarine populations of juvenile Atlantic and gulf menhaden (Brevoortia tyrannus and B. patronus) were sampled during two-boat, surface-trawl, abundance surveys extensively conducted in the 1970s. Juvenile Atlantic menhaden were sampled in 39 estuarine streams along the U.S. Atlantic coast from northern Florida into Massachusetts. Juvenile gulf menhaden were sampled in 29 estuarine streams along the Gulf of Mexico from southeast Texas into western Florida. A stratified, two-stage, cluster sampling design was used. Annual estimates of relative juvenile abundance for each species of menhaden were obtained from catch-effort data from the surveys. There were no significant correlations, for either species, between the relative juvenile abundance estimates and fishery-dependent estimates of year-class strength. From 1972 to 1975, the relative abundance of juvenile Atlantic menhaden in north Atlantic estuaries decreased to near zero. (PDF file contains 22 pages.)
Resumo:
Fish assemblage structure of Maryland's coastal lagoon complex was analyzed for spatial and seasonal patterns for the period 1991-2000. Data was made available by Maryland Department of Natural Resources from their MD Coastal Bays Finfish Survey. Dominant species from separate trawl and wiw surveys included blue crab Callinectes sapidus (erroneously included here as a "fish" due to its dominance and commercial importance), bay anchovy Anchoa mitchilli, spot Leiostomous xanthurus, silver perch Bairdiella ehrysoura, and Atlantic menhaden Brevwrtia tyrannus. Ninety-four fish species were identified in the two surveys, a diversity substantially higher than other survey records for Middle Atlantic Bight estuarine and lagoon systems (richness=26 to 78 species). Total species richness for the trawl survey was highest in Chincoteague and lowest in Assawoman and Sinepuxent. On the other hand, mean richness per tow (-area) and related Shannon Weiner Diversity Index were significantly higher in the northern two bays (Assawoman and Isle of Wight Bays) than in the two southern bays (Chincoteague or Sinepuxent Bays). For the seine survey, effort-adjusted diversity indices were significantly lower for Chincoteague Bay than for the other three bays. Higher relative abundances were observed in the northern bays than in the southern bays. The trawl survey exhibited the lowest catch-per-site in Sinepuxent Bay and the highest in Assawoman Bay. The seine survey had the lowest catch-per-site in Chincoteague Bay while the other three embayments were of similar magnitude. There was clear seasonality in assemblage structure with peak abundance and diversity in the summer compared to other seasons. Blue crabs in particular showed a c. 2-fold decline in relative abundance from early summer to fall, which is likely attributable to harvest removals (i.e., an exploitation rate of c. 50%). Seagrass coverage, although increasing over the course of the 10 year survey, did not have obvious effects on species diversity and abundance across or within the embayments, although it did have positive associations with two important species: bay anchovy and summer flounder Pavalich thys dentatus. Atlantic menhaden were most dominant in Assawoman Bay, which could be related to higher primary production typically observed in this Bay in comparison to the other three. (PDF contains 99 pages)
Resumo:
ENGLISH: Increments in otoliths (sagittae) were examined, using light and scanning electron microscopy, to determine ages and estimate growth rates of larval and early-juvenile black skipjack, Euthynnus lineatus. Larvae and juveniles were collected between 1987 and 1989 from coastal waters of Panama in the eastern Pacific Ocean. Results from a laboratory experiment indicated that immersion for 6 and 12 hours in a 200 mg/L solution of tetracycline hydrochloride adequately marks otoliths and that increments are formed daily in the sagittae of postflexion larvae and early juveniles. Further, survival rates of tetracycline-treated fish were not significantly different from those of control fish. Growth rates were derived from length-age relationships of 218 field-collected specimens ranging in size from 5.7 to 20.3 mm SL. A growth rate of 0.70 mm/d was estimated from the weighted regression of standard length on age for all specimens. This rate lies within the range reported for larvae and early juveniles of other species of subtropical and tropical scombrids. Growth rates of postflexion larvae and early juveniles were not significantly different between the rainy season in July-August 1988 and the dry, upwelling season in January-February 1989. Growth was, however, significantly more variable for older individuals in July-August than in January-February, and may correspond, in part, to seasonal patchiness of prey. The growth rates of the otoliths relative to fish length were also not significantly different between seasons; however, the otoliths were larger relative to the lengths of fish collected in the rainy season, which may reflect slower growth during earlier larval stages. SPANISH: Se examinaron incrementos en otolitos (ságitas), usando microscopia de luz y de barrido electrónico, a fin de determinar la edad y estimar las tasas de crecimiento de barriletes negros, Euthynnus lineatus, larvales y juveniles tempranos. Entre 1987 y 1989 se capturaron larvas y juveniles en las aguas costeras de Panamá en el Océano Pacífico oriental. Los resultados de un experimento de laboratorio indicaron que una inmersión de 6 a 12 horas de duración en una solución de 200 mg/L de hidrocloro de tetraciclina marca los otolitos adecuadamente y que los incrementos se forman a diario en las ságitas de larvas en postflexión y juveniles tempranos. Además, las tasas de supervivencia de los peces tratados con tetraciclina no fueron significativamente diferentes a aquellas de los peces de control. Se calcularon las tasas de crecimiento a partir de las relaciones de talla-edad de 218 especímenes de TE entre 5.7 y 20.3 mm capturados en el mar. Se estimó.una tasa de crecimiento de 0.70 mm/día a partir de la regresión ponderada de talla estándar sobre edad para todos los especímenes. Esta tasa cae dentro del rango reportado para larvas y juveniles tempranos de otras especies de escómbridos subtropicales y tropicales. Las tasas de crecimiento de larvas en postflexión y juveniles tempranos no fueron significativamente diferentes entre la temporada de lluvias en julio-agosto de 1988 y la temporada de sequía y afloramiento en enero-febrero de 1989. Sin emoargo, el crecimiento fue significativamente más variable para los individuos de mayor edad en julio-agosto que en enero-febrero, y quizás corresponda parcialmente a la irregularidad temporal de la abundancia de presas. Las tasas de crecimiento de los otolitos en relación a la talla de los peces tampoco fueron significativamente diferentes entre temporadas; sin embargo, los otolitos eran más grandes en relación a la talla en peces capturados en la temporada de lluvias, lo cual podría reflejar crecimiento más lento durante las etapas larvales más tempranas. (PDF contains 42 pages.)
Resumo:
Six KMFRI stations located in Nyanza Gulf of Lake Victoria (Kenya) were sampled in order to investigate the forage strategy of juvenile Lates niloticus. Thirty speciemens were collected using a bottom trawl at each station and sorted into three size classes 1-2 cm and 3-20 cm total length. Stomach contents were analysed and taxonomic keys used to identify zoplankton and other insects. Caridina nilotica was the dominant food item in both frequency of occurrence and numerical abundance. In fish examined from 1-2 cm T.L., cladocerans were prominent food items, while at 2-3 and 3-20 cm, C. nilotica was dominant