23 resultados para Jacek, Saint, ca. 1183-1257 Christian saints - Poland

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of strontium-to-calcium (Sr/Ca) ratios in otoliths is becoming a standard method to describe life history type and the chronology of migrations between freshwater and seawater habitats in teleosts (e.g. Kalish, 1990; Radtke et al., 1990; Secor, 1992; Rieman et al., 1994; Radtke, 1995; Limburg, 1995; Tzeng et al. 1997; Volk et al., 2000; Zimmerman, 2000; Zimmerman and Reeves, 2000, 2002). This method provides critical information concerning the relationship and ecology of species exhibiting phenotypic variation in migratory behavior (Kalish, 1990; Secor, 1999). Methods and procedures, however, vary among laboratories because a standard method or protocol for measurement of Sr in otoliths does not exist. In this note, we examine the variations in analytical conditions in an effort to increase precision of Sr/Ca measurements. From these findings we argue that precision can be maximized with higher beam current (although there is specimen damage) than previously recommended by Gunn et al. (1992).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned or abandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea. Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephala macrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently, facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute for Nature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Danube is ca. 2850 km in length and is the second largest river in Europe. The Austrian part of the Danube falls 156 metres in altitude over its 351 km length and, since the early 1950s, the river has been developed into a power-generating waterway, so that the continuity of the river is now interrupted by ten impounded areas. Only two stretches of the original free-flowing river are left, the Wachau region (above river-km 2005, west of Vienna) and the region downstream from the impoundment at Vienna (river-km 1921). Most of the recent theories and concepts related to invertebrates, in the context of the ecology of running waters, are based on studies on small streams, whereas investigations of large rivers have played a minor role for a long time, mainly due to methodological difficulties. The authors' recent detailed studies on macroinvertebrates in the free-flowing section of the Danube below Vienna, provide an excellent opportunity to survey or restate scientific hypotheses on the basis of a large river. In this review the main interest focuses on the investigation of biodiversity, i.e. the number of species and their relative proportions in the whole invertebrate community, as well as major governing environmental factors. The article summarises the species composition, the important environmental variables at the river cross-section and the effect of upstream impoundment on the riverbed and its fauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CRO dedicated this issue to Christian Champagnat with the view of attesting his important role in the development of African fisheries oceanography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).