6 resultados para JARARACA VENOM

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scatophagus argus argus (Green Scat) is a pretty aquarium fish. Its hard spines are venomous and can cause painful injury. In this study 60 specimens of Green Scat were collected periodically from coastal waters of Boushehr (south of Iran) from May 2011 to April 2012. Anatomical features of venomous spines were investigated. Scat venom was extracted from the spines in a new manner for keeping the specimens alive. The nature of venom was tested by SDS-PAGE. Ethical issues and animal welfare principles such as rapid and instantaneous anesthetizing, post operation disinfection and fast recovery of the specimens was practiced in order to minimize the complications. This method enhanced the purity and quantity of venom as demonstrated by 12 separated proteins in electrophoresis. New ethical issues were developed to surviving the specimens and prolong viability as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green scat namely as Scatophagus argus argus is a venomous aquarium fish belonging to Scatophagidae family. It can induce painful wounds in injured hand with partial paralysis to whom that touch the spines. Dorsal and ventral rough spines contain cells that produce venom with toxic activities. According to unpublished data collected from local hospitals in southern coastal region of Iran, S. argus is reported as a venomous fish. Envenomation induces clinical symptoms such as local pain, partial paralysis, erythema and itching. In the present study green scat (spotted scat) was collected from Persian Gulf coastal waters. SDS-PAGE indicated 12 distinct bands in the venom ranged between 10-250 KDa. The crude venom had hemolytic activity on human erythrocytes (1%) with an LC100 (Lytic Concentration) of about 1.7 μg. The crude venom can release 813 μg proteins from 0.5% casein. Phospholipase C activity was recorded at 3.125 μg of total venom. Our findings showed that the edematic activity remained over 48 h after injection. The purification of the venom was done by HPLC and 30 peaks were obtained within 80 min but only one peak in 68 min retention time showed hemolytic activity at 90% acetonitril was isolated. The area percentage of the hemolytic protein showed that this hemolytic protein consist of 32 percent of total proteins and its molecular weight was 72 KDa in SDS_PAGE. The results demonstrated that crude venom extracted from Iranian coastal border has different toxic and enzymatic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The defensive spines of fifteen Malayan freshwater fishes have been studied morphologically. The classification of spines has been slightly modified from the previous work of Fernando and Fernando (1960). They are divided into simple, denticle-bearing and venom-carrying. The simple spines are further sub-divided into single and multiple and the denticle-bearing into Bagriid and Clariid types. The latter agree morphologically with the venom-carrying spines of previously studied forms and may be a degenerate condition. Simple spines occur singly in the Cyprinidae where they are found at the anterior end of the dorsal fin. A spine of similar structure occurs in the catfish Glyptothorax. In the families Anabantidae, Cichlidae and Mastacenbelidae simple spines occur as a series. Denticle-bearing spines occur in the catfishes (Order-Nematognathi). Those having denticles on one face occur in the Bagridae, Siluridae, Sisoridae, and Akysidae. They are referred to as Bagriid type. In the other type denticles occur on the anterior and posterior faces of the spine. They are referred to as Clariid type. None of the Malayan species studied had venom-carrying spines and they are unlikely to be found in the freshwater species. The functioning of the defensive mechanism whose morphological bases are spines is discussed and the relation between the size and habitat on the effectiveness of the spines is mentioned. The evolution of defensive spines is discussed briefly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of venomous species of Persian Gulf cone snails and characterization of venom composition and their features is so important from the point of medical importance. Marine cone snails from the genus Conus are estimated to consist of up to 700 species. The venom of cone snails has yielded a rich source of novel neuroactive peptides or conotoxins. The present study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. The specimens of Conus textile were collected of Larak Island from depth of 7 m. The collected samples were transferred to laboratory alive and were stored at -700 c. he veno s ducts were separated and ho ogenized with deionized water he ixture centrifuged at rp for inutes upernatant was considered as extracted veno and stored at - C after lyophylization. The protein profile of venom determined by using SDS-PAGE and HPLC used to investigate the extracted venom and to evaluate the analgesic activity, formalin test was carried out. SDS-PAGE indicated several bands ranged between 6 and 250 kDa. Chromatogram of the venom demonstrated more than 44 large and small fractions. The amount of 10 ng of Conus crude venom and analgesic peptide showed the best anti-pain activity in formalin test. No death observed up to 100 mg/kg, which is 250,000 times higher than the effective dose.Venom characterization of Persian Gulf Conus textile may be of medical importance and potential for new pharmaceutical drugs as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative refolding is one of the key challenges hampering the development of peptide based compounds as therapeutics. The correct refolding for three disulfide peptide like w-Conotoxi n MVIIA is difficult and crucial for biological activity. This work advanced knowledge of chemical and biological for improve oxidative refolding of synthetic w-Conotoxi n MVIIA in base of Conus magus venom. The present study aimed to set up an appropriate and effective protocols for refolding of disulfide-rich w-Conotoxin MVIIA. In this study, the crude peptide was protected with Acm group, according to the right amino acid sequences (Synthesized by Australian Company). The crude peptide was purified by H PLC. To prepare the peptide to refolding, innovative deprotection applied molar ratio (AMR) method was performed based on mercury. Accuracy of deprotection was approved by reverse phase chromatography. The deprotected target peptide (omega-conotoxin) was determined by SDS-PAGE. Then the Oxidative refolding of target peptide was performed in six protocol based on Guanidinium chloride and oxidized and reduced Glutathione. Analgesic effect of refolded peptide was surveyed with formalin test in mice Balb/c. Non neurotoxic effects of target peptides were survey with ICV injection in mice model (C57/BL6). The innovative deprotection protocol performed based on the best ratio of mercury/2-mercaptoethanol adjusted to 1mg/10p1 in 90 minute. The results showed the yield and purity of omega-conotoxin MVIIA as 93 and 95%, respectively. Refolding of 40 mg omega Conotoxin with GSSG and GSH on ratio of 10:1 and 20 mM ammonium acetate showed the best analgesic effect compared with the other methods. The result showed 95.5% yield and 98% purity of omega-conotoxin MVIIA in this refolding method. Related refolding method reduced 85% pain in experimented mice using 7 ng of the peptide. That was 71.5 fold stronger than morphine and 2 times than standard Prialt®. And it was not neurotoxic in mice. In this study, refolding method for omega-conotoxin MVIIA was optimized in the fourth factor including: reducing the time, amount and number of reagent and increase the efficiency. We introduced new method for deprotection of omega-conotoxin MVIIA. Effective, economic and applied refolding and deprotecti on method was performed in this research may al so be applied to similar omega conotoxin peptides.