12 resultados para Interpretation of History
em Aquatic Commons
Resumo:
The overall purpose of this guide is to provide a manual for the collection and interpretation of sea trout scales. A brief introduction considers the advantages and disadvantages of using scales to determine age and growth. To ensure that scales are interpreted in a consistent manner, all major terms are defined and a standard system for age notation is proposed. The methodology for the collection, mounting and interpretation of scales is described in detail, and this is followed by a section on the back-calculation of lengths at different ages. Each topic is discussed critically. The final part of this guide is an atlas illustrating scales from a wide range of sea trout and including not only excellent "type-scales" but also difficult and impossible scales.
Resumo:
Summer flounder, Paralichthys dentatus, are managed as a single stock along the Atlantic coast from the U.S.– Canada border to the southern border of North Carolina. Justification of the single-stock approach is based on lack of genetic evidence for multiple stocks and the difficulty presented by managing the species from Cape Hatteras to the U.S.–Canada border. In this review, we present an interpretation of various morphometric, meristic, biochemical, and tagging studies, published and unpublished, that indicate the presence of two, or possibly three, distinct stocks in the management area. In addition, we have included new data from a tagging study that was conducted on juveniles from Virginia that aids in defining the stock(s) north of Cape Hatteras. Summer flounder, overfished for the past two decades, is recovering, and reconsideration of proposed stock structure could have direct implications for management policy decisions.
Resumo:
Numerous studies have applied skeletochronology to sea turtle species. Because many of the studies have lacked validation, the application of this technique to sea turtle age estimation has been called into question. To address this concern, we obtained humeri from 13 known-age Kemp’s ridley (Lepidochelys kempii) and two loggerhead (Caretta caretta) sea turtles for the purposes of examining the growth marks and comparing growth mark counts to actual age. We found evidence for annual deposition of growth marks in both these species. Corroborative results were found in Kemp’s ridley sea turtles from a comparison of death date and amount of bone growth following the completion of the last growth mark (n=76). Formation of the lines of arrested growth in Kemp’s ridley sea turtles consistently occurred in the spring for animals that strand dead along the mid- and south U.S. Atlantic coast. For both Kemp’s ridley and loggerhead sea turtles, we also found a proportional allometry between bone growth (humerus dimensions) and somatic growth (straight carapace length), indicating that size-at-age and growth rates can be estimated from dimensions of early growth marks. These results validate skeletochronology as a method for estimating age in Kemp’s ridley and loggerhead sea turtles from the southeast United States.
Resumo:
Much of what we know about the climate of the United States is derived from data gathered under the auspices of the cooperative climate network. Particular aspects of the way observations are taken can have significant influences on the values of climate statistics derived from the data. These influences are briefly reviewed. The purpose of this paper is to examine their effects on climatic time series. Two other items discussed are: (1) a comparison of true (24-hour) means with means derived from maximums and minimums only, and (2) preliminary work on the times of day at which maximums and minimums are set.
Resumo:
The paper "The effect of mesh size on the fishing efficiency of sardine gill nets" [K.M. Joseph and A.V. Sebastian, Fish. Tech; 1(2), 180-182 (1964)] marks an important step in the progress of fisheries technology and biology in India.
Resumo:
Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)
Resumo:
ENGLISH: The staff of the Inter-American Tropical Tuna Commission is collecting and analyzing catch statistics of the Eastern Pacific fishery for yellowfin tuna (Neothunnus macropterus) and skipjack (Katsuwonus pelamis) in order to provide the factual information required for maintaining the catch of these species at maximum sustainable levels (Shimada and Schaefer, 1956). Careful, systematic and continued studies of the population structure, life history, and ecology of these species are needed for a proper and adequate interpretation of the catch statistics so that a sound conservation program may be achieved (Schaefer, 1956). SPANISH: El personal científico de la Comisión Interamericana del Atún Tropical cumple, entre sus tareas, la de reunir y analizar las estadísticas de pesca del atún aleta amarilla (Neothunnus macropterus) y del barrilete (Katsuwonus pelamis) de la pesquería del Pacífico Oriental, a fin de adquirir la información necesaria para mantener la pesca de estas especies a niveles de producción máxima sostenible (Shimada y Schaefer, 1956). Estudios cuidadosos, sistemáticos y continuos de la estructura de la población y ciclo de vida y ecología de estas especies, son necesarios para lograr una interpretación adecuada de las estadísticas de pesca, de modo que éstas, a su vez, permitan realizar un programa conservacionista serio (Schaefer, 1956). (PDF contains 73 pages.)
Resumo:
ENGLISH: One phase of the duties of the Inter-American Tropical Tuna Commission is the gathering and interpretation of data concerning the life history of the commercially important bait species throughout the Eastern Pacific Ocean. During 1958 the Commission established a laboratory in Manta, Ecuador to study tuna. It was subsequently found that this fishery was dependent upon one species of anchovy, Anchoa naso, which was locally referred to as "colorado." During the calendar year 1959 approximately 380,000 scoops of bait were taken by the Manta tuna fleet (Schaefer, 1960), which at that time numbered about 23 vessels. Since then the fleet has increased by about 25 per cent and it is probable that the bait catch has increased also. Virtually nothing has been reported concerning the life history of this species. Hildebrand (1943) reviewed its taxonomy and reported standard lengths ranging from 32 to 135 mm. Peterson (1956) examined specimens from Central America and found them to range from 27 to 66 mm. He also indicated that the species spawned over a long period of time. The present report describes some aspects of the life history of Anchoa naso in Ecuadorian waters. The findings are based on 121 collections taken during the period March 1959 through June 1961. SPANISH: Una fase de las obligaciones de La Comisión Interamericana del Atún Tropical es la obtensión e interpretación de los datos concernientes a la historia natural de las especies de carnada comercialmente importantes en todo el Océano Pacifico Oriental. En el año de 1958 la Comisión estableció un laboratorio en Manta, Ecuador, para estudiar el atún. Se encontró subsecuentemente que esta pesquería dependía de una especie de anchoa, Anchoa naso, conocida localmente con el nombre de colorado. Durante el año calendario de 1959, la flota atunera de Manta, que en ese tiempo alcanzaba a unos 23 barcos, obtuvo aproximadamente 380,000 copas (scoops) de carnada (Schaefer, 1960). Desde entonces la flota ha aumentado en un 25 por ciento, y es probable que la captura de peces-cebo haya aumentado también. Nada se ha informado virtualmente sobre la historia natural de esta especie. Hildebrand (1943) revisó su taxonomia e informó sobre su longitud estándar, que varia entre los 32 y 135 mm. Peterson (1956) examinó especímenes de la América Central, y encontró que variaban entre los 27 y 66 mm. También indicó que la especie desova durante un largo periodo de tiempo. El presente informe describe algunos aspectos de la historia natural de la Anchoa naso en aguas ecuatorianas. Los hallazgos están basados en 121 recolecciones hechas durante el periodo de marzo de 1959 a junio de 1961. (PDF contains 30 pages.)
Resumo:
This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.
Resumo:
For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish.