3 resultados para Intermittently Driven Damped Oscillator
em Aquatic Commons
Resumo:
Understanding the link between climate and regional hydrologic processes is of primary importance in estimating the possible impact of future climate change and in the validation of climate models that attempt to simulate such changes. Two distinct problems need to be addressed: quantitatively establishing the link between changes in climate and the hydrologic cycle, and determining how these changes are expressed over differing temporal and spatial scales. To solve these problems, our interdisciplinary group is studying important aspects of hydrology, paleolimnology, geochemistry, and paleontology as they apply to climate-driven hydrologic changes.
Resumo:
A two dimensional numerical barotropic model based on the depth-integrated equations is presented here. Sensitivity of the model is analyzed by using wind stresses of different months. Real wind data and actual bathymetry are used as an input to obtain the circulation patterns of the northern Arabian Sea during specific seasons. However, the model is also tested with constant depth for comparison. A number of numerical simulations are performed to study the combined effects of wind stress, bathymetry and basin geometry. Since the goal of this study is to simulate the circulation of the northern Arabian sea in accordance with the observed wind stress, therefore, wind stresses of different months like July (the peak os SW monsoon), October (the transition period from SW to NE monsoon), January (the peack of NE monsoon) and April (the transition period from NE to SW monsoon) are used to examine the circulation patterns. The results obtained are satisfactory in that they resemble known patterns.