157 resultados para Integrative Water Research

em Aquatic Commons


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tap water is not sterile; it contains organisms which grow in water distribution systems or inside taps and their fittings. The absence of known pathogenic bacteria is assured by the absence of the indicator organisms but concerns have been raised in the past few years that drinking water fulfilling the standards laid down in the EC Directive ECC 80/778 may still cause disease. These concerns have arisen from several sources: the fact that a cause has been identified in only half of all suspected waterborne outbreaks of disease; reports have suggested that heterotrophic bacteria possessing single pathogenic mechanisms such as haemolysin may cause disease; reports of heterotrophic organisms causing water contact diseases in hospitals. These concerns led to a reappraisal of the pathogenic potential of heteretrophic bacteria, by carrying out an extensive literature search and review commissioned by the UK Water Research Company. This research identified many papers showing an association between drinking water and heterotrophic bacteria but only very few reports of suspected waterborne disease associated with the heterotrophs. The organisms demonstrating potential to cause disease were species of Aeromonas and Yersinia, but typing of organisms identified in patients and isolated from the water revealed very few similarities. The potential of Aeromonas and Yersinia to cause waterborne disease is thought to be very low and the Communicable Disease Surveillance Centre database of laboratory infections due to these two genera of organisms was analysed to produce population-related incidences for each health region in England and Wales. Additionally a laboratory questionnaire revealed different levels of ascertainment of these two organisms in different laboratories of the Public Health Laboratory Service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. The Water Research Institute (WRI) in Akosombo, Ghana, is working to bring cage aquaculture technology to smallholder farmers. The stocking, feeding and cage-construction technology piloted by WRI is now being widely adopted in the Lower Volta basin in Ghana. The results of WRI research over the period 2005-2009 are presented here as a guide to potential investors. (PDF contains 19 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The report looks at trials and results of sonic tracking devices. The report includes an appendix on a salmon tracking exercise using oxygen sensing ultrasonic transmitting tags which was carried out on the Ribble Estuary during the period 8th July 1982 to 19th July, 1982. The tags used were developed and manufactured by Aberdeen University and Zootelemetry Research Laboratory Ltd. of Aberdeen, working under contract from the Water Research Centre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is a handbook about Chalk Rivers Nature Conservation and Management from March 1999 by the Water Research Centre and commissioned by English Nature and the Environment Agency, primarly provides an objective basis for formulating conservation strategies for relevant Site of Special Scientific Interest (SSSIs) and Special Areas of Conservation (SACs). It was also seen as being applicable to chalk rivers more generally and has increasingly been regarded as important to the work of the Biodiversity Action Plan Steering Group on chalk rivers, which is led by the Environment Agency. This report contains information on characteristic wildlife communities, their habitat requirements and the ecological impact of activities that are relevant to the chalk river environment. It provides guidance on setting management objectives, options for mitigating impacts, and measures for the maintaining and enhancing the river channel, riparian and floodplain areas associated. The term `chalk river’ is used to describe watercourses dominated by groundwater discharge from chalk geology, including those that flow over a range of non-chalk surface geologies at various points along their length. England contains numerous examples of this river type, located in and downstream of areas of outcropping chalk in the south, East Anglia and up into Lincolnshire and Yorkshire. Indeed, England has the major part of the chalk river resource of Europe. A number of chalk rivers have been designated as Sites of Special Scientific Interest (SSSIs) and English Nature and Environment Agency work drawing up joint conservation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors provide an extensive annotated bibliography to a full list of species occurring in Scotland, to highlight what is known about them and to indicate potential areas for further research. The list of references brings together published research papers and numerous unpublished theses and reports, including experimental and laboratory studies conducted in Scotland, although some may not have unique application to the fish fauna in Scottish waters. There has been no attempt to include references that are made incidentally in the general literature intended for naturalists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In both developed and developing countries, there is increased competition for water resources, resulting in deficiencies in supply and in various forms of pollution. In developing countries, the nutritional potential of aquatic resources is very important. To realize this potential, integrated research and management for sustainable water resource use are needed. This requires a sound understanding of the structure and function of aquatic ecosystems. A programme is presented which stresses the interrelationships of the physical, chemical and biological components of aquatic systems and their catchments. The programme consists of 16 stages in 5 phases, which are as follows: System description; System functioning and modelling; Resource assessment/dynamics; Resource potential; and, Resource utilization for sustainability. This programme enables workers within different disciplines to identify how their expertise contributes to the overall research requirements to support resource development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shore environments of Lakes Victoria and Kyoga with potential for the establishment and proliferation of water hyacinth were identified. They are characterised by: (i) shelter from violent off-shore and along-the-shore wind and wave action (ii) flat or gentle slope under relatively shallow water, and (iii) a muddy bottom rich in organic matter. Such environments are strongly associated with emergent macrophytes of papyrus, Vossia sp and, at times Typha sp where Pistia stratiotes, species of ceratophyllum, myriophylum and nymphaea also occur. In Lake Kyoga association with Vossia sp facilitated establishment of water hyacinth even along wind-swept shores and promoted extension of mats of the two machrophytes into the open lake. Urgent research on water hyacinth is proposed in the areas of nutrient relations, weed biology and on its impact on the biodiversity resource, with particular emphasis on the fishery component. Findings from the research could facilitate formulation of weed control options and alternative resource management strategies. A regional approach to address the water hyacinth menace is highly recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a report to the California Department of Parks and Recreation. It describes water quality and aquatic invertebrate monitoring after the construction of the Carmel River Lagoon Enhancement Project. Included are data that have been collected for two years and preliminary assessment of the enhanced ecosystem. This report marks the completion of 3-years of monitoring water quality and aquatic habitat. The report adopts the same format and certain background text from previous years’ reporting by the same research group (e.g. Larson et al., 2005). (Document contains 100 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has shown that aquatic weeds, particularly hydrilla ( Hydrilla verticillata , (L.F.) Royle), can be controlled with exposure of 8 to 12 weeks with concentrations of 10 to 15 ppb of fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl) phenyl]-4(1 H )- pyridinone) (Haller et al. 1990 and Fox et al. 1994). Fluridone label recommendations restrict the use of the treated waters for irrigation of turf or newly seeded crops and seed beds for 30 days following the last application of the herbicide. The objective of this research was to determine the effects of 10 weeks of irrigation with fluridone containing water on a common Florida residential turfgrass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(PDF has 12 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapidly expanding population and economic growth in the seven counties of the East Central Florida Regional Planning Council as shown in Figure 1, herein called the East Central Florida Region or the Region, has resulted in increasing demands on its water resources. Although there is abundant water in the Region as a whole, the water in some areas of the Region is of unacceptable quality for most uses. As the population increases the demand for water will become much greater and the available supply may be reduced by pollution and increased drainage necessitated by urbanization and other land development- Ground-water supplies can be increased by capturing and storing water underground that now drains to the sea or evaporates from swamp areas. Research is needed, however, to develop artificial-recharge methods that are feasible and which will preserve or improve the quality of water in the aquifer. (PDF contains 57 pages)