4 resultados para Integration And Modeling

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonindigenous species (NIS) are a major threat to marine ecosystems, with possible dramatic effects on biodiversity, biological productivity, habitat structure and fisheries. The Papahānaumokuākea Marine National Monument (PMNM) has taken active steps to mitigate the threats of NIS in Northwestern Hawaiian Islands (NWHI). Of particular concern are the 13 NIS already detected in NWHI and two invasive species found among the main Hawaiian Islands, snowflake coral (Carijoa riseii) and a red alga (Hypnea musciformis). Much of the information regarding NIS in NWHI has been collected or informed by surveys using conventional SCUBA or fishing gear. These technologies have significant drawbacks. SCUBA is generally constrained to depths shallower than 40 m and several NIS of concern have been detected well below this limit (e.g., L. kasmira – 256 m) and fishing gear is highly selective. Consequently, not all habitats or species can be properly represented. Effective management of NIS requires knowledge of their spatial distribution and abundance over their entire range. Surveys which provide this requisite information can be expensive, especially in the marine environment and even more so in deepwater. Technologies which minimize costs, increase the probability of detection and are capable of satisfying multiple objectives simultaneously are desired. This report examines survey technologies, with a focus on towed camera systems (TCSs), and modeling techniques which can increase NIS detection and sampling efficiency in deepwater habitats of NWHI; thus filling a critical data gap in present datasets. A pilot study conducted in 2008 at French Frigate Shoals and Brooks Banks was used to investigate the application of TCSs for surveying NIS in habitats deeper than 40 m. Cost and data quality were assessed. Over 100 hours of video was collected, in which 124 sightings of NIS were made among benthic habitats from 20 to 250 m. Most sightings were of a single cosmopolitan species, Lutjanus kasmira, but Cephalopholis argus, and Lutjanus fulvus, were also detected. The data expand the spatial distributions of observed NIS into deepwater habitats, identify algal plain as an important habitat and complement existing data collected using SCUBA and fishing gear. The technology’s principal drawback was its inability to identify organisms of particular concern, such as Carijoa riseii and Hypnea musciformis due to inadequate camera resolution and inability to thoroughly inspect sites. To solve this issue we recommend incorporating high-resolution cameras into TCSs, or using alternative technologies, such as technical SCUBA diving or remotely operated vehicles, in place of TCSs. We compared several different survey technologies by cost and their ability to detect NIS and these results are summarized in Table 3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A workshop was convened by the MODEL Task Team and held June 23-28, 1996, in Nemuro, Japan, to develop the modeling requirements of the PICES Climate Change and Carrying Capacity (CCCC) Program. It was attended by over 40 scientists from all member nations of PICES. The principal objectives of the workshop were to • review the roles and limitations of modeling for the CCCC program; • propose the level of modeling required; and • provide a plan for how to promote these modeling activities. Secondary activities at the workshop included organisational meetings of the Regional comparisons (REX) and Basin-scale experiment (BASS) Task Teams, and a symposium by Japan-GLOBEC on “Development and application of new technologies for measurement and modeling in marine ecosystems.” This report serves as a record of the proceedings of this workshop. (PDF contains 89 pages)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The catastrophic event of red tide has happened in the Strait of Hormuz, the Persian Gulf and Gulf of Oman from late summer 2008 to spring 2009. With its devastating effects, the phenomenon shocked all the countries located in the margin of the Persian Gulf and the Gulf of Oman and caused considerable losses to fishery industries, tourism, and tourist and trade economy of the region. In the maritime cruise carried out by the Persian Gulf and Gulf of Oman Ecological Research Institute, field data, including temperature, salinity, chlorophyll-a, dissolved oxygen and algal density were obtained for this research. Satellite information was received from MODIS and MERIS and SeaWiFS sensors. Temperature and surface chlorophyll images were obtained and compared with the field data and data of PROBE model. The results obtained from the present research indicated that with the occurrence of harmful algal blooms (HAB), the Chlorophyll-a and the dissolved oxygen contents increased in the surface water. Maximum algal density was seen in the northern coasts of the Strait of Hormuz. Less concentration of algal density was detected in deep and surface offshore water. Our results show that the occurred algal bloom was the result of seawater temperature drop, water circulation and the adverse environmental pollutions caused by industrial and urban sewages entering the coastal waters in this region of the Persian Gulf ,This red tide phenomenon was started in the Strait of Hormuz and eventually covered about 140,000 km2 of the Persian Gulf and total area of Strait of Hormuz and it survived for 10 months which is a record amongst the occurred algal blooms across the world. Temperature and chlorophyll satellite images were proportionate to the measured values obtained by the field method. This indicates that satellite measurements have acceptable precisions and they can be used in sea monitoring and modeling.