14 resultados para Infrastructure Projects
em Aquatic Commons
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)
Resumo:
The Geologic Atlas of the United States was digitized and stored in the Texas A&M University institutional repository. Extensive metadata was created which emphasized the geographic and geologic aspects of the material. The map sheets were also convered into kml files for Google Earth and ESRI shape files for use in GIS. A Yahoo!Map interface allows for visualization of the locations of each folio and user friendly browsing across the collection. Details of the project will be discussed, including the selection, digitization methods and standards, preservation, metadata, web presence and staffing. Its storage in DSpace, assortment of publicity outlets, and its inclusion in targeted clearinghouses expand its potential use to national and international audiences.
Resumo:
The report briefly outlines the programme of the National Rivers Authority (NRA), placing the Fisheries programme in the context of the work of the NRA as a whole, and viewing the tracking work against the broader requirements of the NRA Fisheries research programme. All regions of England and Wales are considered. Two techniques currently exist for studying the detailed timing and extent of movements of adult salmon: tracking of individually identifiable fish, and counting the numbers of fish moving past a fixed point in the river. The development of tracking techniques and the integrated use of tracking and fish counters is briefly reviewed in Section 3. Further details of these techniques are given in Appendices. Section 4 summarises and assesses completed and current NRA tracking studies. Section 5 discusses the scientific content of these studies in relation to similar work carried out elsewhere in the UK. The NRA programme of tracking studies is evaluated in Section 6. Section 7 discusses future fisheries projects and Section 8 details the future development of tracking techniques. Finally, recommendations arising out of this review are summarised in Section 9.
Resumo:
The following brief is to ensure standard criteria and format are used for the scoping and environmental assessment of water resources projects leading to the production of an environmental report or Environmental Statement. This volume is one of a series giving guidance on water resources projects. The water resources projects will predominantly comprise drought orders and permits, time limited and permanent licences. Smaller projects, such as spray irrigation licences, will not require an environmental assessment. This document forms the basis for discussions between the Environment Agency North East Region, consultees and the applicant. The process aims to produce a thorough assessment. Each section addresses consecutive elements of the assessment process. Section 2 outlines the structure for a scoping document, section 3 outlines the structure for an Environmental Statement and section 4 gives guidance on the role of an Environmental Action Plan. Appendices 1 and 2 should be used in conjunction with the scoping process and cover a wide range of aspects. However, some projects may not require all of them to be included, whilst for others, the inclusion of additional factors may be appropriate.
Resumo:
In its role as protector of the water environment, the Environment Agency requires significant water resources abstraction applications and schemes such as drought orders, drought permits, time limited licences, and river transfers to be environmentally assessed leading to the production of an environmental report or statement. This may not take the form of a formal Environmental Assessment, but is required to provide environmental information to support applications. (See Volume 1 - Guidance for Scoping and Environmental Assessment for Water Resources Projects in North East Region). This second volume concentrates on the environmental monitoring component of environmental assessments.
Resumo:
Fish tracking is a valuable technique for the provision of detailed information on the behaviour patterns of individual fish especially during estuarine and riverine migration. 2. Tracking studies help in the provision of a comprehensive description of the variety offish behaviour patterns in response to factors such as water flow, obstructions and water quality. 3. There are advantages to be gained by complementing fish tracking studies with data collected from fish counters and vice versa. 4. An overall evaluation of NRA fish tracking projects is presented in the wider context of NRA strategic research objectives. 5. The requirement for future development of tracking equipment, improved data analysis techniques, better communication and more immediate report preparation is identified. 6. Individual project evaluation is given for NRA (or the appropriate Water Authority predecessor) tracking studies conducted on the Ribble estuary, the River Tamar, River Torridge, Rivers Test and Itchen, River Lodden, the Welsh River Dee, River Glaslyn, River Taff, River Tawe, River Tywi, River Usk, Rivers Avon and Stour and the River Frome. 7. An outline for future strategic research is provided which identifies particular areas for study:- i) Identification of environmental factors which control the entry of fish into rivers. ii) Improvement of the understanding of the relationship between water flow and upstream movement of salmonids. iii) Examination of the detailed movements and behaviour of fish in relation to obstructions. iv) Closer definition of water quality requirements for salmonid fish. v) Definition of habitat preferences of salmonids in rivers. vi) Subsidiary topics such as the movements of non-salmonid fish and the downstream migration of kelts and juvenile salmonids.
Resumo:
The different computer softwares developed by the International Center for Living Aquatic Resources (ICLARM) and its functions and uses in fisheries science are presented.
Resumo:
The benefits of decentralizing the management of coastal resources to local governments and resource users have long been recognized, but the best systems for coastal resources management depend on many factors. A number of community-based management and co-management projects were started in the Philippines in the early 1980s. This report describes a comparative assessment of these projects to determine where improvements can be made in the design of future community-based coastal resource management projects. Early and continuing involvement by project beneficiaries is one of the factors that contributes to the success of the project development, implementation, and evaluation.
Resumo:
This is the Species management in aquatic Habitats overview of sub projects and their management produced by the Environment Agency in 1998. This report was under the R&D Project, which it was initiated in 1995 to provide information on species of conservation value of particular relevance to the Environment Agency (then the National Rivers Authority, NRA), in relation to its activities affecting aquatic environments. Outputs comprise Species Action Plans (SAPs), practical management guidelines for Agency staff and third parties, and various research and survey outputs to improve the knowledge base on the status and ecological requirements of priority species. This R&D Technical Report provides an overview of the work undertaken, additionally identifying lessons to be learnt in the management of species-related research within the framework of the UK Biodiversity Action Plan. The process of species selection was initially based upon a wide ranging review of priority species of relevance to the then NRA, encompassing both highly threatened species and species that are relatively common but are at particular risk from Agency activities.
Resumo:
The author presents a brief account of the infrastructure facilities required for the fishing industry. He describes those facilities presently available in Sri Lanka, and those that are under construction, and gives a few suggestions indicating the nature of infrastructure facilities that are vital to the local situation at its present stage of development. The principal facilities discussed are (1) fish landing places; (2) unloading handling facilities; (3) vessel servicing facilities; and (4) navigation aids.