18 resultados para Information Technologies Classification

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A review article looking at the type of information requirements commonly shared by scientists and their use of traditional information services. Areas covered include primary requirements of IFE (Institute of Freshwater Ecology) staff, pure versus applied research, informal and personal sources of information, and traditional library and information services. It goes on to describe how research into information systems and technology may improve the wider accessibility and use of information to the scientific community. Technologies covered include online databases, telecommunications, gateways, expert systems, optical technology and applications of CDROM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz data collected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated to describe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar images provided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence of certain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work in specific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current information is reviewed that provides clues to the intraspecific structure of dolphin species incidently killed in the yellowfin tuna purse-seine fishery of the eastern tropical Pacific (ETP). Current law requires that management efforts are focused on the intraspecific level, attempting to preserve local and presumably locally adapted populations. Four species are reviewed: pantropical spotted, Stenella attenuata; spinner, S. longirostTis; striped, S. coeruleoalba; and common, Delphinus delphis, dolphins. For each species, distributional, demographic, phenotypic, and genotypic data are summarized, and the putative stocks are categorized based on four hierarchal phylogeographic criteria relative to their probability of being evolutionarily significant units. For spotted dolphins, the morphological similarity of animals from the south and the west argues that stock designations (and boundaries) be changed from the current northern offshore and southern offshore to northeastern offshore and a combined western and southern offshore. For the striped dolphin, we find little reason to continue the present division into geographical stocks. For common dolphins, we reiterate an earlier recommendation that the long-beaked form (Baja neritic) and the northern short-beaked form be managed separately; recent morphological and genetic work provides evidence that they are probably separate species. Finally, we note that the stock structure of ETP spinner dolphins is complex, with the whitebelly form exhibiting characteristics of a hybrid swarm between the eastern and pantropical subspecies. There is little morphological basis at present for division of the whitebelly spinner dolphin into northern and southern stocks. However, we recommend continued separate management of the pooled whitebelly forms, despite their hybrid/intergrade status. Steps should be taken to ensure that management practices do not reduce the abundance of eastern relative to whitebelly spinner dolphins. To do so may lead to increased invasion of the eastern's stock range and possible replacement of the eastern spinner dolphin genome.(PDF file contains 24 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During April 8th-10th, 2008, the Aliance for Coastal Technology (ACT) partner institutions, University of Alaska Fairbanks (UAF), Alaska SeaLife Center (ASLC), and the Oil Spill Recovery Institute (OSRI) hosted a workshop entitled: "Hydrocarbon sensors for oil spill prevention and response" in Seward, Alaska. The main focus was to bring together 29 workshop participants-representing workshop managers, scientists, and technology developers - together to discuss current and future hydrocarbon in-situ, laboratory, and remote sensors as they apply to oil spill prevention and response. [PDF contains 28 pages] Hydrocarbons and their derivatives still remain one of the most important energy sources in the world. To effectively manage these energy sources, proper protocol must be implemented to ensure prevention and responses to oil spills, as there are significant economic and environmental costs when oil spills occur. Hydrocarbon sensors provide the means to detect and monitor oil spills before, during, and after they occur. Capitalizing on the properties of oil, developers have designed in-situ, laboratory, and remote sensors that absorb or reflect the electromagnetic energy at different spectral bands. Workshop participants identified current hydrocarbon sensors (in-situ, laboratory, and remote sensors) and their overall performance. To achieve the most comprehensive understanding of oil spills, multiple sensors will be needed to gather oil spill extent, location, movement, thickness, condition, and classification. No single hydrocarbon sensor has the capability to collect all this information. Participants, therefore, suggested the development of means to combine sensor equipment to effectively and rapidly establish a spill response. As the exploration of oil continues at polar latitudes, sensor equipment must be developed to withstand harsh arctic climates, be able to detect oil under ice, and reduce the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for the U.S. to adopt a multi-agency cooperation for oil spill response, as the majority of issues surounding oil spill response focuses not on the hydrocarbon sensors but on an effective contingency plan adopted by all agencies. It is recommended that the U.S. could model contingency planning based on other nations such as Germany and Norway. Workshop participants were asked to make recommendations at the conclusion of the workshop and are summarized below without prioritization: *Outreach materials must be delivered to funding sources and Congressional delegates regarding the importance of oil spill prevention and response and the development of proper sensors to achieve effective response. *Develop protocols for training resource managers as new sensors become available. *Develop or adopt standard instrument specifications and testing protocols to assist manufacturers in further developing new sensor technology. *As oil exploration continues at polar latitudes, more research and development should be allocated to develop a suite of instruments that are applicable to oil detection under ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop entitled "Technologies for Measuring Currents in Coastal Environments" was held in Portland, Maine, October 26-28, 2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), an ACT partner organization. The primary goals of the event were to summarize recent trends in nearshore research and management applications for current meter technologies, identify how current meters can assist coastal managers to fulfill their regulatory and management objectives, and to recommend actions to overcome barriers to use of the technologies. The workshop was attended by 25 participants representing state and federal environmental management agencies, manufacturers of current meter technologies, and researchers from academic institutions and private industry. Common themes that were discussed during the workshop included 1) advantages and limitations of existing current measuring equipment, 2) reliability and ease of use with each instrument type, 3) data decoding and interpretation procedures, and 4) mechanisms to facilitate better training and guidance to a broad user group. Seven key recommendations, which were ranked in order of importance during the last day of the workshop are listed below. 1. Forums should be developed to facilitate the exchange of information among users and industry: a) On-line forums that not only provide information on specific instruments and technologies, but also provide an avenue for the exchange of user experiences with various instruments (i.e. problems encountered, cautions, tips, advantages, etc). (see References for manufacturer websites with links to application and technical forums at end of report) b) Regional training/meetings for operational managers to exchange ideas on methods for measuring currents and evaluating data. c) Organize mini-meetings or tutorial sessions within larger conference venues. 2. A committee of major stakeholders should be convened to develop common standards (similar to the Institute of Electrical and Electronics Engineers (IEEE) committee) that enable users to switch sensors without losing software or display capabilities. (pdf contains 28 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper traces the history of the different documentation media used for information dissemination. Such early media are clay tablets, papyrus, and vellum or parchment codex. The invention of printing however revolutionized the information industry, enabling the production of books in multiple copies. Photography came into documentation mainly to preserve rare materials and those that easily deteriorate. This paper reports the efforts of National Institute for Freshwater Fisheries Research (NIFFR) and Kainji Lake Fisheries Promotion Project (KLFPPP), Nigeria, to develop an Object Oriented Database (OOD) using photographs. The photographs are stored in digitized form on commercial computers, using the program ACDSee 32 for classification, description and retrieval. Specifically the paper focuses on photographs in fisheries as visual communication and expression. Presently, the database contains photo documents about the following aspects of Kainji Lake fisheries: fishing gears and crafts, fish preservation methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While college students use a wide array of technologies to access information, their skills at determining what is relevant, in a university setting and in life, are poor. Many of these skills have to be taught in college courses. Instruction must be performed by a collaborative team using technologies that effectively reach students. This team must be ready to go into the classroom when needed and be able to address the problem whenever the student needs assistance. The results will be better writing and better research skills that will not only benefit the faculty but will lead to lifelong learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The National Marine Fisheries Service is required by law to conduct social impact assessments of communities impacted by fishery management plans. To facilitate this process, we developed a technique for grouping communities based on common sociocultural attributes. Multivariate data reduction techniques (e.g. principal component analyses, cluster analyses) were used to classify Northeast U.S. fishing communities based on census and fisheries data. The comparisons indicate that the clusters represent real groupings that can be verified with the profiles. We then selected communities representative of different values on these multivariate dimensions for in-depth analysis. The derived clusters are then compared based on more detailed data from fishing community profiles. Ground-truthing (e.g. visiting the communities and collecting primary information) a sample of communities from three clusters (two overlapping geographically) indicates that the more remote techniques are sufficient for typing the communities for further in-depth analyses. The in-depth analyses provide additional important information which we contend is representative of all communities within the cluster.