4 resultados para Indirectly affects
em Aquatic Commons
Resumo:
Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles) into a population, is a fundamental process for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coral populations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal and maintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect) and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness) and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. The creation of management plans to promote impact mitigation,rehabilitation and conservation of the Colombian coral reefs is a necessity that requires firstly, a review and integration of existing literature on scleractinian coral recruitment in Colombia and secondly, larger scale field studies. This motivated us to summarize and analyze all existing information on coral recruitment to determine the state of knowledge, isolate patterns, identify gaps, and suggest future lines of research.
Resumo:
The purpose of this study was to measure and evaluate relationships between populations of benthic macroinvertebrates and fish, as well as variations in water quality in streams affected by acid Mine drainage. (PDF contains 21 pages)
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
A study was carried out with three replicates to determine the effects of feeding Moina micrura enriched with astaxanthin alone (M1) or astaxanthin in combination with either vitamin E (M2), vitamin D (M3) or Cod Liver oil (M4) on the growth, survival and fatty acid composition of giant fresh water prawn Macrobrachium rosenbergii (de Man) larvae. Growth rate was expressed as the time taken to the settlement of 95% post larvae. Maximum growth, the lowest time taken to the 95% PL settlement (38.5±0.50 days), was observed in larvae fed with M3 Moina. The highest survival rate (66.0±1.00%) was observed in those fed with M4 Moina and the second highest survival (61.0±1.00%) and growth rates (40.0±0.00 days) were shown with M2 Moina. The minimum values for both growth (42.5±0.50 days) and survival (33.0±1.50%) were observed in the group fed un-enriched Moina. Results also showed that the survival of prawn larvae increased as the quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased in the dietary Moina. The highest levels of EPA (5.57±0.21%), DHA (3.50±0.21%) and highest total Highly Unsaturated Fatty Acids (HUFA) (13.87±0.68%) were seen in the Moina fed on astaxanthin and Cod Liver Oil (CLO). The results of the study showed that the nutritive quality of Moina, with respect to important fatty acids, can be increased by enrichment and will influence the growth, survival and the fatty acid composition of fresh water prawn larvae fed on them.