2 resultados para Importer Relationship Performance
em Aquatic Commons
Resumo:
Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.
Resumo:
The spiny lobster (Panulirus argus) fishery in Florida was operationally inefficient and overcapitalized throughout the 1980s. The Trap Certificate Program initiated during the 1992–93 season was intended to increase gear efficiency by reducing the number of traps being used while maintaining the same catch level in the fishery. A depletion model was used to estimate trap fishing efficiency. The costs of fishing operations and the value of the catch were used to determine the revenues generated by the fishery under different trap levels. A negative functional relationship was found between the catchability coefficient and the number of traps, which indicated that the fewer traps operating under the trap reduction scheme were more efficient. Also, the financial analyses indicated that the higher catch efficiency resulting from fewer traps generated significantly higher revenues, despite lower stock abundances. This study indicates that the trap reduction program had improved a situation that would have been much worse.