6 resultados para Image texture analysis
em Aquatic Commons
Resumo:
EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)
Resumo:
Changes in the texture (elastic nature) of the flesh of barrel salted herring during the ripening process at 4°C have been monitored. The method employs the analysis of stress-relaxation curves after compression to half of the sample thickness on an lnstron Model 1112. The parameter 'T/P' for each sample represents the reciprocal of the gradient of a line connecting P and T0.368p. This parameter characteristic of each sample's texture was calculated as the ratio of 'T/P' where, T is the relaxation time and is defined as the time required for a stress at constant strain to decrease to 1/e of its original value, where 'e' is the base of natural logarithms (2.7183). Since 1/e=0.368, the relaxation time is the time required for the force to decay to 36.8% of its original value. P is the peak height of the curve (i.e. the force value at the maximum height). This method was adopted from the bakery industry for testing the degree of gluten development in bread dough. The 'T/P' values obtained over the course of ripening for differently treated salted-herring in barrels ranged between 1 and 12. The trends in 'T/P' value, during ripening period for the different samples, appeared to be parallel changes in texture perceived by sensory observation (subjective measurement), although the heterogeneous nature of the samples gave standard deviations, about the replicate sample mean, around 5%. The method appears promising as an objective measure for monitoring this aspect of the textural quality of barrel salted-herring through ripening if reproducibility of test results can be improved by more careful standardization of sample preparation and test protocol.
Resumo:
Fish sausages are finely ground fish flesh, either of a single species or mixed, homogenised with starch, sugar, fat, spices and preservatives, generally filled in cylindrical synthetic or natural casings and pasteurised. Similar products containing small pieces of quality fish and lard are termed "fish ham". They are highly relished products in Japan, annual consumption exceeding 2 lakh tones. Preliminary studies have shown that they can catch a lucrative market in our country. However, being a pasteurised product which is often consumed as such without any further cooking, strict quality control measures have to be enforced so as to avoid food poisoning hazards. Besides physical characteristics like absence of damages, pin-holes, curliness and air pockets as well as jelly strength, texture and flavour, chemical characteristics like pH and acid values, moisture, carbohydrate and fat contents and volatile bases have to be assessed. A very important test that has to be carried out along with the above, before passing a lot for free distribution is the bacteriological examination to avoid the presence of pathogenic organisms.
Resumo:
The anatomical and morphometric (shape indices, contour descriptors and otolith weight) characterizations of sagittal otoliths were investigated in 13 species of Lutjanus spp. inhabiting the Persian Gulf. This is the first study that compares the efficiency of three different image analysis techniques for discriminating species based on the shape of the outer otolith contour, including elliptical Fourier descriptors (EFD), fast Fourier transform (FFT) and wavelet transform (WT). Sagittal otoliths of snappers are morphologically similar with some small specific variations. The use of otolith contour based on wavelets (WT) provided the best results in comparison with the two other methods based on Fourier descriptors, but only the combination of the all three methods (EFD, FFT and WT) was useful to obtain a robust classification of species. The species prediction improved when otolith weight was included. In relation to the shape indices, only the aspect ratio provided a clear grouping of species. Also, another study was carried on to test the possibility of application of shape analysis and comparing otolith contour of otoliths of Lutjanus johnii from Persian Gulf and Oman Sea to identify potential stocks. The results showed the otoliths have differences in contour shape and can be contribute to two different stocks.