9 resultados para IDEAS-ABOUT-SCIENCE
em Aquatic Commons
Resumo:
Gomishan Wetland is situated in the extreme southern part of the eastern coast of Caspian Sea. It is connected to the Caspian Sea, so its hydrological features are directly generated from the sea. The whole wetland area (which also consists of the northern part of the wetland that is situated in Turkmenistan republic) is calculated with the aid of the Satellite Images for the years of 1977, 1987 and 1998 respectively 5070, 16320 and 29520 hectares. To have better ideas about food chains in the aquatic ecosystem, five permanent stations was appointed in different parts of the wetland. During one year field study, at the beginning of each month, physical, chemical and biological characteristics of the water and the sediment was surveyed and different specimens were gathered, fixed and took to the laboratories for the relevant analyses. The factors measured in water samples were mainly consist of turbidity, pH, EC, DO, BOD, PO4, NO3, alkalinity, Cl and hardness . The factors measured from sediment samples were the percentage of Sand, Very Fine Sand, Silt, Clay, K, P, N, and Organic Carbon. Biological examinations of the water has been consist of planktonic sample collections, determination, counting and analysis of both phyto and zoo planktons of the wetland. For example the zooplanktons of the Gomishan Wetland are determined in 15 groups, belonging to 5 phyla. The seasonal changes are recognized considerable. The least density of the zooplanktons is occurred in February. The density of most of the groups is seen from the beginning of the summer until the mid autumn. The annual mean density for any 15-zooplankton groups and also the minimum and maximum density with %95 confidences, for each of them, is calculated for the environment of all of the stations and also for the whole wetland. The spatial distribution of the individuals within the population of each of the groups is introduced, according to regular or contagious or random distribution. Diversity indices are calculated for the zooplanktons living in the environment of the stations. Comparison of the wetland, with the southeastern Caspian Sea, from the point of view of zooplankton density and diversity is also obtained. Benthos invertebrates in each station from sediment samples were also extracted. The specimens were colored by Rose Bengal solvent and then were determinate and counted, in separate groups of macro and meio benthos. Among the macro benthos, the highest density was seen in the species of Fyrgula caspia. After that, more density was seen respectively in Apra ovata, Cerastoderma sp., Balanus sp., Nerds divesicolarr, lifytilaster lineatus and Dreissena sp. Among the meio benthos, the most density was seen in Foraminifera and then respectively in Ostracoda, Nernatoda and Bivalve larvae. The indices of diversity and distribution are also calculated. As the birds in this lagoon are of prime importance, all mid winter waterfowl censuses available from recent 13 years are gathered and analysis. Also a whole year (12 times, each at the beginning of one month) waterfowl census was undertaken, throughout the wetland. According to this study, the Eastern Ecosystem of the wetland, is supporting the most population (%75) of the waterfowls, the Middle Open Water Ecosystem and the Western Reed bed Ecosystem, are supporting respectively %14 and %11 of the population. Four of the species are found in the global threatened red list, and the wintering population of the 20 species of the site, in some years, are observed more than %I of the global populations. The Waterfowl Species Diversity and Similarity Indices are given also.
Resumo:
In 2006 the UK-based charity, Global Ocean, with local support from the Third Millennium Foundation, convened a Conversation among specialists about the problems facing the conservation of whales. Called "A consultation on whaling", this gathering was held in the ancient village of Paciano, in Umbria near the border with Tuscany, 15 – 17 October 2006. There were 15 participants from 11 countries. Dr Kees Lankester served as moderator. The outcome was an Aide Memoire which served to guide the participants in the run-up to the 2007 meeting of the International Whaling Commission (IWC), held in Anchorage, Alaska, in June. One point of agreement was that a second consultation should be held in the months following the Anchorage meeting, involving some but not necessarily all of the participants in the first, but concentrating this time on scientific issues – especially those encountered in the Scientific Committee of the IWC –with particular attention to informing a wider public about those scientific activities in relation to the problems confronting the IWC and the views of scientists about them. This document is the report of that Conversation, referred to as Paciano II. The moderator was Dr Giuseppe Notarbartolo di Sciara and the Report was written by Kieran Mulvaney in consultation with all participants, and with reference to an Aide Memoire prepared by the Rapporteur, Dr Russell Leaper. The sponsor and organisers have agreed with the general sentiment expressed by participants in Paciano II that further such conversations should be held at roughly yearly intervals and they will try to satisfy that desire. Although these future gatherings would be concerned with the living ocean they would not necessarily be restricted in future to consideration of whales and whaling. Discussions are on-going for selection of a theme which is of both scientific interest and practical concern for conservation of marine life and management of the uses of ocean space. (Document has 18 pages)
Resumo:
In 2006 the UK-based charity, Global Ocean, with local support from the Third Millennium Foundation, convened a Conversation among specialists about the problems facing the conservation of whales. Called "A consultation on whaling", this gathering was held in the ancient village of Paciano, in Umbria near the border with Tuscany, 15 – 17 October 2006. There were 15 participants from 11 countries. Dr Kees Lankester served as moderator. The outcome was an Aide Memoire which served to guide the participants in the run-up to the 2007 meeting of the International Whaling Commission (IWC), held in Anchorage, Alaska, in June. One point of agreement was that a second consultation should be held in the months following the Anchorage meeting, involving some but not necessarily all of the participants in the first, but concentrating this time on scientific issues – especially those encountered in the Scientific Committee of the IWC –with particular attention to informing a wider public about those scientific activities in relation to the problems confronting the IWC and the views of scientists about them. This document is the report of that Conversation, referred to as Paciano II. The moderator was Dr Giuseppe Notarbartolo di Sciara and the Report was written by Kieran Mulvaney in consultation with all participants, and with reference to an Aide Memoire prepared by the Rapporteur, Dr Russell Leaper. The sponsor and organisers have agreed with the general sentiment expressed by participants in Paciano II that further such conversations should be held at roughly yearly intervals and they will try to satisfy that desire. Although these future gatherings would be concerned with the living ocean they would not necessarily be restricted in future to consideration of whales and whaling. Discussions are on-going for selection of a theme which is of both scientific interest and practical concern for conservation of marine life and management of the uses of ocean space. (19 page document)
Resumo:
Charles M. Breder Jr. “hypothesis” diary is a deviation from the field diaries that form part of the Breder collection housed at the Arthur Vining Davis Library, Mote Marine Laboratory. There are no notes or observations from specific scientific expeditions in the document. Instead, the contents provide an insight into the early meticulous scientific thoughts of this biologist, and how he examines and develops these ideas. It is apparent that among Dr. Breder’s passions was his continual search for knowledge about questions that still besieged many scientists. Topics discussed include symmetry, origin of the atmosphere, origin of life, mechanical analogies of organisms, aquaria as an organism, astrobiology, entropy, evolution of species, and other topics. The diary was transcribed as part of the Coastal Estuarine Data/Document Rescue and Archeology effort for South Florida. (PDF contains 33 pages)
Resumo:
Executive Summary: The Connectivity Colloquium evolved from an exhortation by Dan Basta, Director of the National Marine Sanctuary Program, to come together and assess what we know about the condition of our natural resources, identify information gaps and how to fill them, and transform science and management from an emphasis on documentation to a nexus for action. This purpose in some ways reflects the initiation of the Florida Keys National Marine Sanctuary itself, which was designated by an act of the U.S. Congress in 1990 in the aftermath of the 1989 Exxon Valdez oil spill in Alaska and three major ship groundings of the Florida Reef Tract in late 1989. Over the next seven years NOAA worked with federal, state, and local partners to develop a comprehensive management plan for the Sanctuary implemented under a co-trustee partnership between NOAA and the State of Florida. (PDF contains 270 pages; 14Mb)
Resumo:
Science Cafes present a casual meeting place where people who may have little or no science background can learn about a current scientific topic in an informal and friendly environment. The coffee shop setting is designed to be inviting and informal so that students, faculty, and community members can feel comfortable and engage in lively and meaningful conversations. The café is organized around an interesting scientific topic with a brief presentation by a scientist and may include a short video clip. A Science Café can (1) provide an opportunity and venue for increasing science literacy, (2) publicize local scientific endeavors, and (3) identify the library as an epicenter of informal education on the campus and in the community. This presentation will describe the development of the Science Café at the University of Southern Mississippi Gulf Coast campus Library in Long Beach and plans for future cafes on the Mississippi coast.
Resumo:
In November 1993, Professor Alexei Yablokov, who at the time was the Science Advisor to Russian President Boris Yeltsin, stood on a podium in Galveston, Tex., and delivered a speech to the Society for Marine Mammalogy’s biennial conference, the premier international event in the field of marine mammal science. Addressing the 1,500 scientists present, he made what amounted to a national confession: that, beginning in 1948, the U.S.S.R. had begun a huge campaign of illegal whaling. Despite being a signatory to the International Convention on the Regulation of Whaling (signed in Washington, D.C., just 2 years before in 1946), the Soviets set out to pillage the world’s ocean
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.