4 resultados para Hyper-théâtralité
em Aquatic Commons
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
This is the Cheshire Stillwaters Summary results of 1999 produced by the Environment Agency on February 2000. The report highlights the water quality concerns of those areas surveyed by the Stillwaters Monitoring Programme: Oak Mere, Betley Mere, Petty Pool, Tabley Mere, Comber Mere and Norbury Mere. The report contains divided by area sections on physic-chemical characteristics and water chemistry, Algal and Zooplankton surveys, Discussion, Planned Surveys 2000 and survey maps. 1999 data from Petty Pool, Betley Mere, Comber Mere and Tabley Mere were classified by the trophic status of each stillwater as hyper-eutrophic/ eutrophic, and Oak Mere were classified as mesotrophic/ eutrophic.
Resumo:
The Mundel Lake is an extremely shallow lagoon on the west coast of Sri Lanka. It is connected to the Puttalam Lagoon through 15 km long Dutch Canal. Salinity measurements and daily sea level data were obtained fortnightly from January 1993 to March 1994 and they were used to quantify the salt and water budget along with precipitation, evaporation and freshwater runoff. Extreme fluctuations of salinity and sea level are striking features of the system. Salinity of the Mundel Lake and Dutch Canal varied from 5-46.5 and 6 61 ppt respectively while the sea level ranged from -0.25 to +1.2 m. Tidal variations were not seen in the lagoon due to its long narrow canal system. Salt budget showed that the deposition of salt on the lagoon bottom during periods of decreasing water level. During increasing water level, salt is dissolved again. Flow of water through the Dutch Canal between the Puttalam Lagoon and Mundel Lake is driven by the changes in sea level. These changes are mainly due to seasonal changes of net freshwater supply and, to a lesser degree, to seasonal changes in sea surface height. As the flow rates are small due to the long and narrow canal, the residence time ranges between two months and several months in the Mundel Lake, except during season of high freshwater supply. As the water exchange is weak, the Mundel Lake becomes hyper saline with strong fluctuations in salinity. This implies a stress to all lagoon dwelling aquatic organisms and also to aquaculture practices in the area.
Resumo:
Toxicological effects of Asulox-40 and Emisan-6 to eggs and early life history stages of Sarotherodon mossambicus were reported. 80% of egg hatching occurred in the controls, 1 p.p.m and 5 p.p.m concentrations of Asulox-40. 10 p.p.m. and 50 p.p.m. concentrations of the same toxicants had 70% and 60% hatchings while in Emisan-6 in the same concentrations the hatching were 70% and! 40%. In 100 p.p.m. concentration of both toxicants 20% incomplete hatching occurred. In Emisan-6 Lc 50 and Lc 100 values were recorded at 32 hand 96h respectively in 10 p.p.m. concentrations. In Asulox-40 the same values were recorded in 24h and 40h respectively at 50 p.p.m. concentration. The fish activity during the experimental period showed initial hyper activity. It was established that the Emisan-6 is more harmful to S. mossambicus than Asulox-40. The harmless concentrations of these chemicals were 1.2 p.p.m. for Asulox-40 and 0.6 p.p.m. for Emisan-6.