2 resultados para Homeostatic Epistemology
em Aquatic Commons
Resumo:
In recent years coastal resource management has begun to stand as its own discipline. Its multidisciplinary nature gives it access to theory situated in each of the diverse fields which it may encompass, yet management practices often revert to the primary field of the manager. There is a lack of a common set of “coastal” theory from which managers can draw. Seven resource-related issues with which coastal area managers must contend include: coastal habitat conservation, traditional maritime communities and economies, strong development and use pressures, adaptation to sea level rise and climate change, landscape sustainability and resilience, coastal hazards, and emerging energy technologies. The complexity and range of human and environmental interactions at the coast suggest a strong need for a common body of coastal management theory which managers would do well to understand generally. Planning theory, which itself is a synthesis of concepts from multiple fields, contains ideas generally valuable to coastal management. Planning theory can not only provide an example of how to develop a multi- or transdisciplinary set of theory, but may also provide actual theoretical foundation for a coastal theory. In particular we discuss five concepts in the planning theory discourse and present their utility for coastal resource managers. These include “wicked” problems, ecological planning, the epistemology of knowledge communities, the role of the planner/ manager, and collaborative planning. While these theories are known and familiar to some professionals working at the coast, we argue that there is a need for broader understanding amongst the various specialists working in the increasingly identifiable field of coastal resource management. (PDF contains 4 pages)
Resumo:
Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching