4 resultados para Hofstede’s Cultural Dimension Model

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Otto Kelland was a truly unique individual in Newfoundland. During his long life he had several careers from being a prison superintendant to being an instructor at Marine Institute. During his life Kelland made hundreds of wooden boat models. They are beautifuly hand-crafted and represented the type of watercraft used by fishermen in Newfoundland. The collection of boat models made by Otto Kelland and owned by Marine Institute made an ideal object to be digitalized. In particular the collection of dories was an ideal group to be digitized. They were housed in one cabinet and accompanied by hand-written documents describing each model. The Digital Archives Initiative (DAI) is a “gateway to the learning and research-based cultural resources held by Memorial University of Newfoundland and partnering organizations.” The DAI hosts a variety of collections which together reinforce the importance, past and present, of Newfoundland and Labrador's history and culture. I will give an oral presentation of the project followed by a demonstration of the Otto Kelland Dories exhibit on the Digital Archives Initiative (DAI) at Memorial University of Newfoundland. I will be happy to answer questions following my presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher resolution time-stratigraphic records suggest correlation of lower frequency paleoclimatic events with Milankovitch obliquity/precessional cycles and of higher frequency events with the evidently resonance-related Pettersson maximum tidal force (MTF) model. Subsequently published records, mainly pollen, seemingly confirm that atmospheric resonances may have modulated past climatic changes in phase with average MTF cycles of 1668, 1112, and 556 years, as calculated in anomalistic years from planetary movements by Stacey. Stacey accepts Pettersson's dating of AD 1433 (517 YBP) for the last major perihelian spring tide based solely on calculations of moon- and earth-orbital relations to the sun. Use of AD 1433 as an origin for the tidal resonance model seemingly continues to provide a best fit for the timing of cyclical patterns in the presented paleoclimate time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent papers provide detailed analyses of more than 40 high-resolution time series culled from the extensive paleoclimate literature that appear to define cyclical elements of the Solar-Insolation/Tidal-Resonance Climate Model. This model was earlier referred to as the Milankovitch/Pettersson Climatic Theory. This paper provides comparable analyses of an additional 20 or so, evidently supportive, climate and volcanic time series. The tree-ring, historical, pollen, cultural, time-frequency, and hydrologic records range in length from 400 to 90,000 years and spatially from Alaska to Tierra del Fuego.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.