5 resultados para Hnrnp A2
em Aquatic Commons
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
(Document pdf contains 193 pages) Executive Summary (pdf, < 0.1 Mb) 1. Introduction (pdf, 0.2 Mb) 1.1 Data sharing, international boundaries and large marine ecosystems 2. Objectives (pdf, 0.3 Mb) 3. Background (pdf, < 0.1 Mb) 3.1 North Pacific Ecosystem Metadatabase 3.2 First federation effort: NPEM and the Korea Oceanographic Data Center 3.2 Continuing effort: Adding Japan’s Marine Information Research Center 4. Metadata Standards (pdf, < 0.1 Mb) 4.1 Directory Interchange Format 4.2 Ecological Metadata Language 4.3 Dublin Core 4.3.1. Elements of DC 4.4 Federal Geographic Data Committee 4.5 The ISO 19115 Metadata Standard 4.6 Metadata stylesheets 4.7 Crosswalks 4.8 Tools for creating metadata 5. Communication Protocols (pdf, < 0.1 Mb) 5.1 Z39.50 5.1.1. What does Z39.50 do? 5.1.2. Isite 6. Clearinghouses (pdf, < 0.1 Mb) 7. Methodology (pdf, 0.2 Mb) 7.1 FGDC metadata 7.1.1. Main sections 7.1.2. Supporting sections 7.1.3. Metadata validation 7.2 Getting a copy of Isite 7.3 NSDI Clearinghouse 8. Server Configuration and Technical Issues (pdf, 0.4 Mb) 8.1 Hardware recommendations 8.2 Operating system – Red Hat Linux Fedora 8.3 Web services – Apache HTTP Server version 2.2.3 8.4 Create and validate FGDC-compliant Metadata in XML format 8.5 Obtaining, installing and configuring Isite for UNIX/Linux 8.5.1. Download the appropriate Isite software 8.5.2. Untar the file 8.5.3. Name your database 8.5.4. The zserver.ini file 8.5.5. The sapi.ini file 8.5.6. Indexing metadata 8.5.7. Start the Clearinghouse Server process 8.5.8. Testing the zserver installation 8.6 Registering with NSDI Clearinghouse 8.7 Security issues 9. Search Tutorial and Examples (pdf, 1 Mb) 9.1 Legacy NSDI Clearinghouse search interface 9.2 New GeoNetwork search interface 10. Challenges (pdf, < 0.1 Mb) 11. Emerging Standards (pdf, < 0.1 Mb) 12. Future Activity (pdf, < 0.1 Mb) 13. Acknowledgments (pdf, < 0.1 Mb) 14. References (pdf, < 0.1 Mb) 15. Acronyms (pdf, < 0.1 Mb) 16. Appendices 16.1. KODC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.1.1. Seattle meeting agenda, August 22–23, 2005 16.1.2. Seattle meeting minutes, August 22–23, 2005 16.1.3. Busan meeting agenda, October 10–11, 2005 16.1.4. Busan meeting minutes, October 10–11, 2005 16.2. MIRC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.2.1. Seattle Meeting agenda, August 14-15, 2006 16.2.2. Seattle meeting minutes, August 14–15, 2006 16.2.3. Tokyo meeting agenda, October 19–20, 2006 16.2.4. Tokyo, meeting minutes, October 19–20, 2006 16.3. XML stylesheet conversion crosswalks (pdf, < 0.1 Mb) 16.3.1. FGDCI to DIF stylesheet converter 16.3.2. DIF to FGDCI stylesheet converter 16.3.3. String-modified stylesheet 16.4. FGDC Metadata Standard (pdf, 0.1 Mb) 16.4.1. Overall structure 16.4.2. Section 1: Identification information 16.4.3. Section 2: Data quality information 16.4.4. Section 3: Spatial data organization information 16.4.5. Section 4: Spatial reference information 16.4.6. Section 5: Entity and attribute information 16.4.7. Section 6: Distribution information 16.4.8. Section 7: Metadata reference information 16.4.9. Sections 8, 9 and 10: Citation information, time period information, and contact information 16.5. Images of the Isite server directory structure and the files contained in each subdirectory after Isite installation (pdf, 0.2 Mb) 16.6 Listing of NPEM’s Isite configuration files (pdf, < 0.1 Mb) 16.6.1. zserver.ini 16.6.2. sapi.ini 16.7 Java program to extract records from the NPEM metadatabase and write one XML file for each record (pdf, < 0.1 Mb) 16.8 Java program to execute the metadata extraction program (pdf, < 0.1 Mb) A1 Addendum 1: Instructions for Isite for Windows (pdf, 0.6 Mb) A2 Addendum 2: Instructions for Isite for Windows ADHOST (pdf, 0.3 Mb)
Resumo:
Biomass and metabolic rates (total nitrogen and phosphorus excretion and respiration) were measured at 4 stations, representative of the lagoon environment, during high-water (Oct-Nov), dry (Dec-Jan) and rainy (July) seasons. In low-salinity waters (4o/oo) Acartia clausi is almost the only species, whereas a marine and diversified fauna is brought in from the ocean during the dry season. O/NT and O/PT atomic ratios between respiration (O) and total nitrogen (NT) and phosphorus (PT) excretions are high (15.1 and 111, respectively) and show a marked hydrocarbon feeding of zooplankton. Production was assessed from excretion via the net growth efficiency coefficient, K2 , calculated from N/P ratios for particles (a1), zooplankton excretion (a2) and constitution (a3). Daily productivity indices (i.e. daily production/biomass ratio) are high and equivalent to 1.2-3.8 day turn-over times. These high values may be ascribed to high temperatures (26.5-30 C) and phytoplankton richness (surface chlorophyll 'a' concentrations are always greater than 4 mg/m-3). Finally, the paper deals with trophic relationships between phyto- and zooplankton (ingestion /primary production ratio and transfer coefficient) and the question of relationships between zooplankton and predators.
Resumo:
In this study the process of female gray mullet brooders was carried out by using histological study and masurment of sex steroids. Results of histological studies showed that oocyte of gray mullet brooders in Gomishan Rearing Center conditions of develop to the end of yolk globule stage. The results were observed with oocyte in chromatin nucleolar stage (first stage) with means of diameter of 20 p m, in August, perinucleolar stage (second stage) in September with mean diameter of 87 p m, yolk vesicle stage (third stage) in October with mean diameter 200 p m and yolk granules stage (forth stage) from October to November with average diameter of 180 — 650 p m. For the reason of stopping oocyte develop at the end of fourth stage, hormonal induction to final oocyte maturation and ovulation was used. For this purpose, carp pituitary , HCG and LRH-A2 with different combinations were used in two stages, second injection was used 24 hours after first injection. 15 females brooders were divided in 5 groups, different hormonal combinations were injected to four groups and to fifth group as control, only saline, was injected. The process of female brooder rippening in hormonal induction was studied via masurment of sex steroids including 17 a - hydroxy progestrone, estradio1-17)6 and testosterone. Blood samples were collected from caudal vein during first injection, 24, 30 and 48 hours after the first injection. At the same time, for distinguishing histological changes the sample has been attained from the gonads Sex stroid fluctuation patterns in different brooder groups that injected hormon were similar, however hormonal composition had similar effects. All brooder that their oocyte in the beginning of hormonal injection were At the end of fourth stage with oocyte diameter average of 600 p m received to final maturation and ovulation. The brooder that its oocytes were At the begining or mid-fourth stage did not show ovulation but hormonal induction caused oocyte develop at the beginning of fifth stage. Study of 17-hydroxy progestrone fluctuation showed that the maximum level of this steroid (0.347 ng/ml) measured 30 hours after the first injection and was significantly higher (p< 0.05) than those of control group. So, 17-hydroxy progestrone is probably precursor of maturation inducing steroid (MIS). However the maximum level of that observed was coincident with germinal vesicle breakdown, oil droplets coalescence and dissolution of yolk granuls The maximum levels of esteradiol— 17/0 and testosterone (3.778 and 16.801ng/ml,respectively) in spawned brooders,were observed 24 hours after the first injection. levels of those steroids were significantly higher (p<0.05) than control group. Maximum level of sex steroids in the brooders that did not spawn to the end of treatment was observed with more delay than those in spawned brooders. Therefor maximum level of 17a-hydroxy progestrone (0.264 ng/ml) in those brooders observed in fourth sampling time and the maximum levels of estradio1-17a and testosterone (2.944 and 18.993 ng/ml, respectivly)observed in third sampling time that was significantly higher (p<0.05) than those of control group. For the study of stress effect on brooders during the hormonal induction, level of cortisol was measured in every sampling time. level of cortisol had high fluctuation that showed handling level and stress effect on brooders. However maximum level of cortisol in majority of brooders was dominant in third sampling time that was coincident with final maturation.
Resumo:
One of the most important marine ecologic phenomenon , is the study of animal community among the bed or benthic fauna. Macrobenthoses are the graet part of the benthic faune , that are more biomasses than meiofauna and microfauna. To study polychaetes diversity of Mangroves, located in Khoore-Khooran , sampling was conducted on a bimonthly and carried out from December 2001 to October 2002. Bottom samples were collected by Van Veen grab (0.025 m2)at 6 station from 2 transect Insitu measurement of temperature , pH , Do and salinity were done . Atotal of polychaetes werw identified within study 32 Family and 43 Genus . Cirriphormia and Nephtys were the most dominant genus in the studies . The range fomumerical abundance of polychaets was between 3006 per m2 in the station A3 to 559individual per mein the station A1 and the variation was done to different bottom , texture the variable environment conditions govrtneng the different parts of each creeks as well as within creeks . Application of diversity indices (Shannon H') on the dominant polychates assambladges has higher H' in the Azar and lower 1-1/ in the Mehr . and the stations B3 has the highest H' and the station A2 has the lowest H' Application of diversity and Richness, Evennes were studied and showed that the station A3 has the lowest evenness and the most individual , and station A1 has the middle pollution.