6 resultados para Hirsau, Ger. (Benedictine abbey)
em Aquatic Commons
Resumo:
Cockersand Abbey Lighthouse, in River Lune the Baulk, River Lune estuary on the Lancashire Fylde peninsula in the North West of England, UK. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
The reduction of discards will only be achieved, if more effective methods of catch selection will be developed and used. In principle, the unavoidable by catch of commercial fish should be used for human consumption, independent of the requirements for minimum length and existing catch quotas. The amount of such bycatch should be charged to the total catch quota and preferably be used for processing of fish portions with skin (carcasses with skin), because this kind of processing results in higher yields and nutrional advantages compared to fillet processing. Unfortunately, nowadays, in the German fishery and fish trade this traditional form of supply is only of minor importance because of the predominance of fillets and fillet products. However, cooperation between fishing industry and fish trade and a good advertising of processed fish portions with skin could overcome this problem. In the pelagic fishery of herring, mackerel and other similar pelagic species the bycatch of small sized specimen of these species can be a problem. These small sized fish can principally be processed to traditional fish products, but the processing costs for them are much higher. The prospects for processing of the bycatch into minced fish meat, fish protein concentrate or fish protein hydrolysate are very poor under the existing regime in the German fishing industry. A further way for processing of the bycatch, which can not be used for human consumption, is the production of fishmeal. However, only three German factory ships dispose of fish meal plants. Under the current economic conditions, i.e. because of limited storage capacity, the Ger-man trawler and cutter fleet is not able to transport the bycatch for fish meal production ashore.
Resumo:
Ring seines are lightly constructed purse seines adapted for operation in the traditional sector. Fish production and energy requirement in the ring seine operations, off Cochin, Kerala, India are discussed in this paper, based on data collected during 1997- 1998. The results reflect the Gross Energy Requirement (GER) situation that existed during 1997-1998. Mean catch per ring seiner per year worked out to be 211.9 t of which sardines (Sardinella spp.) constituted 44.3%, followed by Indian mackerel (Rastrelliger kanagurta) 29.7%, carangids 11.4%, penaeid prawns 2.2%, pomfrets 1.1% and miscellaneous fish 11.3%. Total energy inputs into the ring seine operations were estimated to be 1300.8 GJ. Output by way of fish production was determined to be 931.85 GJ. GER is the sum of all non-renewable energy resources consumed in making available a product or service and is a measure of intensity of non-renewable resource use. GER per tonne of fish landed by ring seiners was estimated to be 6.14. Among the operational inputs, kerosene constituted 73.4% of the GER, followed by petrol (12.7%), diesel (6.7%) and lubricating oil (2.4%). Fishing gear contributed 3.8%, engine 0.8% and fishing craft 0.3% of the GER. Energy ratio for ring seining was 0.72 and energy intensity 1.40.
Resumo:
The fishery for deepwater precious corals in the Hawaiian Islands has experienced an on-and-off history for almost 40 years. In spite of this, research, driven primarily by the precious coral jewelry industry, remains active. In this paper, the results of deepwater surveys in 2000 and 2001 are reported. In summary, a new bed on the summit of Cross Seamount is described and revised estimates of MSY’s for pink coral, Corallium secundum; red coral, Corallium regale; and gold coral, Ger ardia sp., in the two known beds off Makapuu, Oahu, and Keahole Point, Hawaii, in the main Hawaiian Islands, are presented. The population dynamics of each species is described, as well as their ecological limits on Hawaii’s deep reefs, island shelves, and seamounts. The local supply of precious coral in the main Hawaiian Islands is sufficient to support the local industry, but cost/ benefits of selective harvest requirements and weather constraints limit profitability of the fish
Resumo:
Energy is a key input into the fish harvesting process. Efficient use of energy helps in reducing operational costs and environmental impact, while increasing profits. Energy optimisation is an important aspect of responsible fishing as enunciated in the Code of Conduct for Responsible Fisheries. Gross Energy Requirement (GER) is the sum of all non-renewable energy resources consumed in making available a product or service and is expressed in energy units per physical unit of product or service delivered. GER is a measure of intensity of non-renewable resource use and it reflects the amount of depletion of earth’s inherited store of non-renewable energy in order to create and make available a product or service. In this study, GER in fish harvesting up to the point of landing is estimated in selected fish harvesting systems in the small-mechanised sectors of Indian fisheries and compared with reported results from selected non mechanised and motorised fishing systems to reflect the situation during 1997-1998. Among the fish harvesting systems studied, GER t fish-1 ranged from 5.54 and 5.91 GJ, respectively, for wooden and steel purse seiners powered by 156 hp engines; 6.40 GJ for wooden purse seiner with 235 hp engine; 25.18 GJ for mechanised gillnet/line fishing vessel with 89 hp engines; to 31.40 and 36.97 GJ, respectively, for wooden and steel trawlers powered by 99-106 hp engines.