5 resultados para High intensity focused ultrasound
em Aquatic Commons
Resumo:
In the Philippines at present, milkfish farming in ponds includes a wide range of intensities, systems and practices. To make aquaculture possible, ecosystems are used as sources of energy and resources and as sinks for wastes. The growth of aquaculture is limited by the life-support functions of the ecosystem, and sustainability depends on matching the farming techniques with the processes and functions of the ecosystems, for example, by recycling some degraded resources. The fish farm has many interactions with the external environment. Serious environmental problems may be avoided if high-intensity farms are properly planned in the first place, at the farm level and at the level of the coastal zone where it can be integrated with other uses by other sectors. It is believed that the key to immediate success in the mass production of milkfish for local consumption and for export of value-added forms may be in semi-intensive farming at target yields of 3 tons per ha per year, double the current national average. Intensive milkfish farming will be limited by environmental, resource and market constraints. Integrated intensive farming systems are the appropriate long-term response to the triple needs of the next century: more food, more income, and more jobs for more people, all from less land, less resources, and less non-renewable energy.
Resumo:
Analyses of the previous years showed that the reproduction of the Belt Sea cod stock (Gadus morhua morhua) is also very important for the cod stock of the central Baltic Sea (Gadus morhua calarias). Oeberst (1999, 2000) proved, that between 20 % and 50 % of the cods caught in the Bornholm Sea at the age of 2 or 3 years between 1994 and 1998, were spawned in the Belt Sea. On account of this large significance of the Belt Sea cod stock, information regarding the reproduction process are important. The goal of the article presented is the description of the actual spawning areas of the Belt Sea cod stock by means of the spatial distribution of the spawners based on characteristic parameters as the maturity stages and the proportion of the sexes. The basis for these analyses are data sampled between 1992 and 1999. The analyses showed that the actual main spawning areas in the western Baltic Sea were the deeper regions of the Kiel Bay, of the Fehmarn Bay and of the western Mecklenburg Bay. In these regions spawning cods were regularly observed with high intensity. Furthermore, the deeper basin of the Arkona Sea is an important spawning area.
Resumo:
Because dolphins sometimes travel with yellowfin tuna, Thunnus albacares, in the eastern tropical Pacific (ETP), purse seiners use the dolphins to locate and capture tuna schools. During the process of setting the purse seine nets, dolphins often become entangled and drown before they can be released. Data for the U.S. purse seine fleet in the ETP during 1979-88 show that dolphin mortality rates in sets made during the night are higher than mortality rates in sets made during the day. Even with efforts to reduce nightset mortality rates through the use of high intensity floodlights, night set mortality rates remain higher. The data are also used to simulate a regulation on the fishery aimed at eliminating night sets and show that dolphin mortality rates would decrease.
Resumo:
Distribution of the marine life in relation to the extent of pollution at and outside Mahim Bay was studied. A poor marine fauna at stations A and B was associated with a relatively high intensity of pollution accompanied by high BOD and nutrients and low DO levels. A distinct deterioration in the marine life and water quality along the northern part of the bay as compared to the southern part was evident. An increasing trend in the marine fauna with decreasing intensity of pollution from inside to outside the bay was noticed.
Resumo:
Coastal storms, and the strong winds, heavy rains, and high seas that accompany them pose a serious threat to the lives and livelihoods of the peoples of the Pacific basin, from the tropics to the high latitudes. To reduce their vulnerability to the economic, social, and environmental risks associated with these phenomena (and correspondingly enhance their resiliency), decision-makers in coastal communities require timely access to accurate information that affords them an opportunity to plan and respond accordingly. This includes information about the potential for coastal flooding, inundation and erosion at time scales ranging from hours to years, as well as the longterm climatological context of this information. The Pacific Storms Climatology Project (PSCP) was formed in 2006 with the intent of improving scientific understanding of patterns and trends of storm frequency and intensity - “storminess”- and related impacts of these extreme events. The project is currently developing a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors, including: water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism. The PSCP is exploring how the climate-related processes that govern extreme storm events are expressed within and between three primary thematic areas: heavy rains, strong winds, and high seas. To address these thematic areas, PSCP has focused on developing analyses of historical climate records collected throughout the Pacific region, and the integration of these climatological analyses with near-real time observations to put recent weather and climate events into a longer-term perspective.(PDF contains 4 pages)