29 resultados para Heart diseases
em Aquatic Commons
Resumo:
One of the avenues through which the Government objective of poverty eradication in Uganda can be achieved is Fisheries development and management. Up to 20% of Uganda’s surface area is covered by aquatic systems i.e. lakes, rivers, streams and swamps and to a large extent, all these are interconnected. The large lakes: Victoria, Albert, Kyoga, George and Edward are sites of the more important commercial fisheries, but even the smaller water bodies, rivers (e.g. the Rivers Nile and Kagera) and the surrounding swamps provide sources of livelihood to rural areas. Fish is an important source of high quality food, employment revenue and is currently the second most important export commodity next to coffee generating approximately US $ 80 million annually. Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh is rich in proteins, which are superior to those of beef and poultry. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans
Resumo:
About 18% of Uganda’s surface area is covered with water from which 300,000 metric tonnes of fish are produced. Fish are currently the second most important export commodity generating approximately US$100 million. Fish provides 50% of protein diet for the 20 million people translating into per capita consumption of 12 kg. Close to the production system, this figure rises to 50 – 100 kg. It is estimated that fishery-related activities employ at least one million people countrywide (i.e. 5% of the population). Fish is an important source of high quality food, employment, and revenue and it is currently the second most important export commodity next to coffee generating approximately US $ 80 million annually. Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh is rich in proteins, which are superior to those of beef and poultry. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans.
Resumo:
About 18% of Uganda’s surface area is covered with water from which about 300,000 metric tonnes of fish are produced. Fish are currently the second most important export commodity generating approximately US$100 million annually. Fish provides 50% of protein diet for the 20 million people translating into per capita consumption of 12 kg. Close to the production system, this figure rises to 50 – 100 kg. It is estimated that fishery-related activities employ at least one million people countrywide (i.e. 5% of the population). Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans
Resumo:
(4pp.)
Resumo:
Diseases and parasitic problems could constitute significant economic losses in fish production if not controlled, thus the need to continue monitoring its prevalence. Based on field studies on feral and intensively raised fish at the Kainji Lake Research Institute Nigeria, some diseases and parasitic problems have been identified. These include; helminthiasis; fungal disease; protozoa which include Myxosoma sp., Myxobolus spp., Henneguya sp., Trichodina sp., Ichthopthrius sp. bacterial mainly Aeromonas sp., Pseudomonas sp., mechanical injuries; death due to unknown causes and economic assessment of myxosporidian infection. Suggestion for disease control in fish production are recommended
Resumo:
Fish farming practices in the Lake Kainji Area of Nigeria are categorized under seven main cultural facilities, namely, earthen ponds/reservoirs, indoor/outdoor concrete tanks, plastic tanks, floating cages/hapas, aquaria, sewage and feral conditions. The presence of Bacteria isolates associated with diseased fish conditions varied significantly (P<0.05) with different cultural facilities. The highest bacteria isolates and bacterial disease incidence, 33% and 46% respectively, was associated with diseased fish in the indoor/outdoor concrete tanks. The least incidence of bacteria isolates (3.5%) and blue bacterial disease (3%) was associated with diseased fish in the aquaria and feral conditions. Nine Gram-negative and two Gram-positive bacteria genera were isolated during this investigation. Pseudomonas spp. (23.6%) and Staphylococcus spp. (14.3%), were the predominant Gram-negative and Gram-positive bacteria genera in the different cultural facilities, respectively. This paper highlights the relevance of occurrence and distribution of bacteria isolates associated with diseased fish to bacterial fish diseases under different cultural facilities
Resumo:
Fish cage culture is a rapid aquacultural practice of producing fish with more yield compared to traditional pond culture. Several species cultured by this method include Cyprinus carpio, Orechromis niloticus, Sarotherodon galilaeus, Tilapia zilli, Clarias lazera, C. gariepinus, Heterobranchus bidorsalis, Citharinus citharus, Distochodus rostratus and Alestes dentes. However, the culture of fish in cages has some problems that are due to mechanical defects of the cage or diseases due to infection. The mechanical problems which may lead to clogged net, toxicity and easy access by predators depend on defects associated with various types of nets which include fold sieve cloth net, wire net, polypropylene net, nylon, galvanized and welded net. The diseases problems are of two types namely introduced diseases due to parasites. The introduced parasites include Crustaseans, Ergasilus sp. Argulus africana, and Lamprolegna sp, Helminth, Diplostomulum tregnna: Protozoan, Trichodina sp, Myxosoma sp, Myxobolus sp. the second disease problems are inherent diseases aggravated by the very rich nutrient environment in cages for rapid bacterial, saprophytic fungi, and phytoplanktonic bloom resulting in clogging of net, stagnation of water and low biological oxygen demand (BOD). The consequence is fish kill, prevalence of gill rot and dropsy conditions. Recommendations on routine cage hygiene, diagnosis and control procedures to reduce fish mortality are highlighted
Resumo:
For many years action has been taken to prevent the introduction and spread of serious fish diseases in Great Britain. In 1993 national rules were replaced by European Union wide rules designed to promote trade within the single market while safeguarding those parts of the Union with a high fish health status - such as this country. This booklet details the checks and controls which are applied to prevent the spread of disease outbreaks in this country. One can see that different rules apply to different diseases, generally reflecting the severity and other characteristics of the disease. The booklet also tries to explain the diseases and helps to recognise symptoms. This booklet is split into three parts: Part 1 gives an overview of the controls; Part 2 gives details for each of the diseases; and Part 3 gives advice on some of the precautions you can take to guard against the spread of disease.
Resumo:
Technology for effective and fast diagnosis of animal diseases is essential for developing aquaculture management strategies. This paper reviews the conventional techniques for shrimp disease diagnosis and discusses the emergence of nuclei acid probes and polymerase chain reaction (PCR)-based kits as powerful tools for rapid and accurate detection of shrimp diseases.
Resumo:
The use of antibiotics and other chemicals in controlling shrimp pathogens become ineffective as the strains grow more resistant to these chemicals. Moreover, the bacterial pathogen (Vibrio harveyi) produced biofilm coating that protects it from dying and disinfection procedures that are followed during pond preparation. Biological control is being considered as an alternative means of preventing shrimp disease outbreak. The main principle behind biological control is to enhance the growth of beneficial microorganisms which serve as antagonists or target pathogens. The paper discusses shrimp and tilapia crop rotation as a form of effective biological control, a technique which is already being practiced in Indonesia and the Philippines.
Resumo:
The diseases caused by bacteria, fungi, protozoa and metazoa as well as by other biotic and abiotic agents reported in the penaeid prawns of India are reviewed.
Resumo:
The localization of the stretch sensitivity and myogenic automatism in the systemic heart of Octopus vulgaris has been studied on an isolated preparation in which the ventricle was zoned by ligatures. Each region has been submitted to two different levels of internal hydrostatic pressure (1 and 2 kPa). Only the two atrio-ventricular regions were able to contract regularly when submitted to internal pressure, with a frequency dependent from the pressure value, while the ventricle-aortic region was insensitive to the stretching by internal pressure. This result supports the hypothesis that the automatism in this heart is localized. Electrocardiogram recordings from different areas of an isolated and perfused preparation of the systemic heart ventricle are also reported, which suggest that the electrical activity of the ventricle originates in two narrow areas near the atrio-ventricular valves.